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Abstract
The analysis and visualization of flows is a central problem in visualization. Topology based methods have gained
increasing interest in recent years. This article describes a method for the detection of closed streamlines in 3D
flows. It is based on a special treatment of cases where a streamline reenters a cell to prevent infinite cycling during
streamline calculation. The algorithm checks for possible exits of a loop of crossed faces and detects structurally
stable closed streamlines. These global features are not detected by conventional topology and feature detection
algorithms.

1. Introduction

An intuitive and often used method for vector field visualiza-
tion is the calculation of streamlines. If one uses this tech-
nique in turbulent fields, one encounters often the problem
of closed streamlines. A similar problem is discussed in 5

where residence time is used to find recirculation regions.
When reaching a closed streamline the residence time is in-
finite. Residence time is also important information in com-
bustion applications. There one is interested in recirculation
zones with sufficient residence time for the reactions to ap-
proach completion. For instance, burning processes of gas
injected into a swirling jet need a special amount of time to
completely burn. Here, 2D closed streamlines of the vector
field projected onto a cutting plane can be a hint for these
regions as previously proposed by the authors 22.

The difficulty with standard integration methods is that
streamlines approaching a closed curve cycle around that
curve without ever approaching a critical point or the bound-
ary. Usually, one uses a stopping criterion like elapsed time
or number of integration steps to prevent infinite loops. We
present here an algorithm that detects this behavior and that
can be used to visualize closed streamlines. These features
are an essential topological property of the field.

Topological methods have got increasing interest in Sci-
entific Visualization since their introduction by Helman and
Hesselink 3, 6, 11, 15ch.21, 17, 18. Our problem here is also re-
lated to the study of dynamical systems 4, 8 which have also
been an application area for visualization. Koçak et al. 12

concentrate on the use of computer graphics for understand-
ing Hamiltonian systems that appear frequently in mechan-
ics. Hepting et al. 7 study invariant tori in four-dimensional
dynamical systems by using suitable projections into three
dimensions to enable detailed visual analysis of the tori. We-
genkittel et al. 21 present visualization techniques for known
features of dynamical systems. Bürkle et al. 1 use a numeri-
cal algorithm developed by some of the coauthors 2 to visu-
alize the behavior of more complicated dynamical systems.
In the numerical literature, we can find several algorithms
for the calculation of closed curves in dynamical systems 10,
20, but these algorithms are tailored to deal with smooth dy-
namical systems where a closed form solution is given. In
contrast, visualization faces far more often piecewise linear
or trilinear vector fields. Here, the knowledge of the grid and
the linear structure of the field in the cells allow a direct ap-
proach for the search of closed streamlines. The algorithm
can be integrated in the streamline calculation as we will
show.

Several applications exist where closed streamlines play
an important role. For instance, Wong 23 presented a filtering
technique to interpret climate modeling datasets. A typical
feature of a hurricane is an external high-velocity circulation
with a tranquil region inside. These regions are separated by
a closed streamline. Consequently, a hurricane can be iden-
tified by finding this closed streamline. Another application
is the Terrestrial Planet Finder Mission 14. In this mission
one is interested in flying a constellation of five satellites in
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formation around a 3D periodic halo orbit. These orbits are
nothing else than closed streamlines in a 3D vector field.

We repeat necessary terms on vector field topology in sec-
tion 2. Section 3 describes the algorithm for detecting closed
streamlines. Results are presented in section 4 while con-
cluding remarks can be found in section 5.

2. Theory

This section repeats the theoretical background and the
terms used in vector field topology which are used for our
algorithm. We restrict our consideration in this article to
steady, linearly interpolated vector fields ��� �����	��
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������
 � ����
���
���� . � is assumed to be bounded.
This is the situation for many experimental or simulated vec-
tor fields that have to be visualized. We are interested in the
behavior of streamlines
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with the properties
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For Lipschitz continuous vector fields, we can prove the ex-
istence and uniqueness of streamlines �/� through any point,102�

, see 8, 13. The actual computation of the streamlines
is usually done by numerical algorithms like Euler meth-
ods, Runge-Kutta-Fehlberg methods or Predictor/Corrector
methods 16, 19.

The topological analysis of vector fields considers the
asymptotic behavior of streamlines. The origin set or 3 -limit
set of a streamline � is defined by 4�5 06�7�98 :;�&#�<9��=<?>;@BA�C
%#/<D
FEHG�
�IKJKLD<?M = � �&#�<N�7
 5PO . The end set or Q -limit
set of a streamline � is defined by 4�5 06� � 8 :;�&#�<9� =<?>;@ A
�C
%# < 
RG�
�IKJKL <?M = � �&# < �S
 5PO . If the 3 - or Q -limit set
of a streamline consists of only one point, this point is a crit-
ical point or a point at the boundary

- �
of our domain

�
.

(It is assumed that the streamline stays at the boundary point
forever in this notation.)

The most common case of a 3 - or Q -limit set in a vector
field containing more than one inner point of the domain is a
limit cycle 8. This is a streamline � � , so that there is a

#/@T0U�
with
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Figure 1 shows a typical example. Such a cycle is called
structurally stable if, after small changes, the vector field still
contains a closed streamline.

3. Detection of Closed Streamlines

We present an algorithm that detects if an arbitrary stream-
line � converges to a closed streamline ] as defined in sec-
tion 2. This means that � has ] as 3 - or Q - limit, depending

Figure 1: A limit cycle may attract streamlines in its neigh-
borhood.

on the orientation of the integration. We do not assume any
knowledge on the existence or location of the closed curve.
The principle of the algorithm works on any piecewise de-
fined vector field where one can determine the topology in-
side the pieces. In order to illustrate the main ideas of the
algorithm let us start with the two dimensional case which is
already proposed by the authors 22.

The basic idea of the algorithm is to determine a region
of the vector field that is never left by the streamline. We as-
sume that the data of the vector field is given on a grid con-
sisting of triangles and/or quadrilaterals. The vectors inside
a cell are interpolated so that we get an at least continuous
vector field.

Figure 2: A streamline approaching a limit cycle has to
reenter cells.

A streamline approaching a limit cycle has to reenter the
same cell again as shown in Figure 2. In this case we check if
the cells crossed by the streamline have not changed for the
last two turns. This results in a cell cycle which identifies the
above mentioned region. To examine if this cell cycle is left
by the streamline we detect possible changes by checking
the edges of the cells of the cell cycle. Therefore we find the
points on each edge, which we call potential exits, where an
outflow out of the cell cycle may occur near these points.
These points are identical with the vertices of the edge and
points where the vector field is tangential to the edge.

Then we have to figure out if the actually investigated
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exit

Figure 3: If a real exit can be reached, the streamline will
leave the cell cycle.

streamline will leave the cell cycle near such an exit. There-
fore we integrate a streamline backwards from the potential
exit to see if it leaves the cell cycle. If this is not the case
after the streamline crosses every cell involved in the cell
cycle it is shown that this backward integration converges to
the streamline we actually investigate. If, for instance, two
vectors on an edge point in the same direction as the stream-
line, all vectors point in similar direction since we interpolate
linearly at an edge. While detecting the cell cycle we found
two vectors on an edge during following the streamline for
the last two turns that fulfill this criterion. Consequently, the
streamline cannot turn around and cross the edge in the op-
posite direction in between. Therefore it is sufficient to con-
sider only one full turn of the backward integration as in
figure 3. We call this potential exit a real exit because the
streamline will leave the cell cycle after a finite number of
turns near that exit. Figure 3 displays an example for that
case.

exit

exit

entry

Figure 4: If no real exit can be reached, the streamline will
approach a limit cycle.

If case of the backward integrated streamline leaving the
cell cycle it diverges from the actually investigated stream-
line. Consequently, the streamline we want to check cannot
leave the cell cycle in that potential exit, because then we

have an inflow into our region which will leave again at the
exit as shown in figure 4. Consequently this is not a real exit.

If there is no real exit for the streamline, we have proven
that the streamline will never leave the cell cycle. Then there
exists a closed streamline in our cell cycle and the integral
curve tends toward it. If we can find a real exit we have
to continue the streamline calculation. A proof of this al-
gorithm can be found in 22.

Figure 5: Exits of a cell cycle.

Figure 5 illustrates the situation which shows a real exam-
ple. There we start a streamline near the source in the center
of the figure. This streamline spirals until we find the first
cell cycle. The figure also shows all exits and its backward
integrations which are drawn in blue color and the stream-
line itself colored black. The grid is displayed in light blue.
In this example, every potential exit is shown.

Figure 6: Backward integrated surface.
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The principle works similar in 3D. Again, we follow the
streamline until we detect a cell cycle. The difference ex-
ists in the exits. In 3D it is not sufficient to simply integrate
backwards at the vertices. Figure 6 illustrates that. In some
cases the backward integrations starting at the vertices leave
the cell cycle. But some parts of the surface still stay in-
side the cell cycle which may approach the streamline. We
need to figure out if there is any part that is backward inte-
grated starting at the edge approaches the actually investi-
gated streamline. Therefore we have to integrate backwards
starting at the whole edge. Consequently we have to com-
pute a streamsurface instead of a streamline. Therefore we
use a simplified version of the streamsurface algorithm in-
troduced by Hultquist 9. Since we do not need a triangulation
of the surface we only have to process the integration step of
that algorithm. Initially we start the backward integration at
the vertices of the edge. If the distance between these two
backward integrations is greater than a special error limit we
start a new backward integration in between. This continues
with the two neighboring integration processes until we cre-
ated an approximation of the streamsurface that respects the
given error limit. Figure 7 demonstrates this case. At the red
point the two backward integrations are too far away from
each other. So an intermediate streamline is started in the
middle to achieve a better accuracy.

Figure 7: Intermediate backward integrated streamline.

Figure 8: Backward integration in one cell.

The integration stops if the whole streamsurface leaves

the cell cycle. But to construct the surface properly we may
have to continue one single backward integration process
across the boundary of the cell cycle. This is due to the fact
that some part of the streamsurface is still inside the cell
but the backward integrated streamline already left it. Fig-
ure 8 shows this situation. Both streamlines - shown as yel-
low lines - leave the cell, in fact they leave right after they
started. But the integration process must be continued until
the whole surface created inside the cell by these two stream-
lines leaves the cell. This is marked by the red line at the end
of the streamsurface.

Figure 9 (see color plates) shows an example of our back-
ward integration step. There, also the closed streamline is
shown in red and the cell cycle is shown in blue. Every back-
ward integrated streamsurface leaves the cell cycle. Conse-
quently, the existence of a closed streamline is proven. Then
we can find the exact location by continuing the integration
process of the streamline that we actually investigate un-
til the difference between two turns is small enough. This
numerical criterion is sufficient at this point since we have
proven that the streamline will never leave the cell cycle.

4. Results

To test our implementation we created a synthetic dataset
which includes one closed streamline. We first produced a
two dimensional vector field which is symmetrical with re-
spect to the y-axis. Additionally, all vectors residing at the
y-axis where zero. Then we rotated it around the y-axis and
distorted it a little bit to get a three dimensional flow. Fig-
ure 10 (see color plates) shows the result. The closed stream-
line is colored red. To visualize a little bit of the surrounding
flow several streamlines are drawn. Obviously, every stream-
line is attracted by the closed streamline. After a short while
the streamline spirals around the closed streamline until it
completely merges into that one. Figure 11 shows this spi-
raling effect in detail with some more streamlines. Again, the
closed streamline is shown in red and the other streamlines
are colored white. Closed streamlines in three-dimensional
flows can act like sources or sinks as we can see from this
visualization.

5. Conclusion

We presented an algorithm which is able to detect if a
streamline runs into a closed streamline. We only need to
extend the integration process with a check routine. Since it
uses no information on the existence or location of the closed
streamlines, it can be used to find these important features.
The algorithm relies on the fact that the vector field is inter-
polated linearly. All examples were calculated using a vec-
tor field given on a tetrahedral grid. But the algorithm also
works with parallelepiped grids.

In the future we want to extend our algorithm so that it
is able to also detect strange attractors like for instance the
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Figure 9: Closed streamline including cell cycle and backward integrations.

Figure 10: Closed streamline in a 3D vector field.
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Lorentz Attractor. There we do not get a simple cell cycle but
also a bunch of cells that are always crossed by the stream-
line and never left. The difference is that these cells are not
topologically linked in a list but may be arranged in a more
complicated way.
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