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Closed Streamlines in Flow Visualization vOne thing I have learned in a long life: that all our siene,measured against reality, is primitive and hildlike and yet itis the most preious thing we have.Albert Einstein (1879{1955)
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Closed Streamlines in Flow Visualization vii

AbstratVetor �elds our in many of the problems in siene and engineering. In ombustionproesses, for instane, vetor �elds desribe the ow of the gas. This proess an beenhaned using vetor �eld visualization tehniques. Also, wind tunnel experiments anbe analyzed. An example is the design of an air wing. The wing an be optimized toreate a smoother ow around it. Vetor �eld visualization methods help the engineerto detet ritial features of the ow. Consequently, feature detetion methods gainedgreat importane during the last years.Topologial methods are often used to visualize vetor �elds beause they learlydepit the struture of the vetor �eld. In previous publiations about topologialmethods losed streamlines are negleted. Sine losed streamlines an behave in exatlythe same way as soures and sinks they are an important feature that annot be ignoredanymore.To aomplish this, this work onentrates on deteting this topologial feature. Weintrodue a new algorithm that �nds losed streamlines in vetor �elds that are givenon a grid where the vetors are interpolated linearly. We identify regions that annotbe left by a streamline. Aording to the Poinar�e-Bendixson theorem there is a losedstreamline in suh a region if it does not ontain any ritial point. Then we identifythe exat loation using the Poinar�e map. In ontrast to other algorithms, this methoddoes not presume the existene of a losed streamline. Consequently, this algorithm isable to really detet losed streamlines inside the vetor �eld. A parallel version of thisalgorithm is also desribed to redue omputational time. The implementation salesreiproally proportional to the CPU speed of the used omputers.In order to get a better understanding of losed streamlines we sketh the wholeevolution of a losed streamline in time dependent ows. This results in a tube shapedvisualization representing the losed streamline over time. The emerging and vanishingof the losed streamline an be easily investigated to get more insight into this feature.In ombustion proesses losed streamlines in a three dimensional ow are a hint forreirulation zones. These zones desribe regions inside the ow where the gas staysquite long. This is neessary for the gas to ompletely burn. Therefore, we also showhow to detet this important feature in three dimensional vetor �elds.Department of Computer Siene, University of Kaiserslautern, Germany



viiiKurzfassungVektorfelder treten im Zusammenhang mit sehr vielen wissenshaftlihen und inge-nieurm�a�igen Problemen auf. Bei Verbrennungsvorg�angen beispielsweise beshreibenVektorfelder den Verlauf des einstr�omenden Gases. Dieser Vorgang kann mit Hilfe vonTehniken der Vektorfeldvisualisierung verbessert werden. Ebenso lassen sih Wind-kanalexperimente analysieren. Als Beispiel sei das Design einer Trag�ahe genannt. DerFl�ugel kann optimiert werden, um eine bessere Umstr�omung zu erreihen. Methodender Vektorfeldvisualisierung helfen dem Ingenieur, kritishe Eigenshaften der Str�omungzu erkennen. Dementsprehend erlangten Methoden, die Merkmale der Str�omungaufzeigen, in den letzten Jahren immer gr�o�ere Bedeutung.Topologishe Methoden werden h�au�g eingesetzt, um Vektorfelder zu visualisieren,da sie sehr deutlih die Struktur des Vektorfeldes aufzeigen. In fr�uheren Ver�o�entlihun-gen �uber topologishe Methoden wurden geshlossene Stromlinien bisher vernahl�assigt.Da geshlossene Stromlinien sih jedoh genauso verhalten k�onnen wie Quellen undSenken, stellen sie ein wihtiges Merkmal dar, das niht weiter ignoriert werden kann.Um diesen Mangel zu beseitigen, befasst sih die Arbeit mit dem AuÆnden diesertopologishen Eigenshaft. Es wird ein neuartiger Algorithmus vorgestellt, der in derLage ist, geshlossene Stromlinien in Vektorfeldern, die auf einem Gitter de�niert sindund linear interpoliert werden, zu �nden. Dazu wird nah Bereihen gesuht, die voneiner Stromlinie niht mehr verlassen werden k�onnen. Gem�a� dem Poinar�e-Bendixson-Theorem be�ndet sih eine geshlossene Stromlinie in diesem Bereih, falls er keinekritishen Punkte enth�alt. Anshlie�end wird die genaue Position mit Hilfe der Poinar�e-Abbildung bestimmt. Im Gegensatz zu anderen Algorithmen setzt diese Methode nihtdie Existenz einer geshlossenen Stromlinie voraus. Daher ist das hier vorgestellte Ver-fahren in der Lage, geshlossene Stromlinien auh tats�ahlih aufzu�nden. Eine Paral-lelisierung dieses Algorithmus wird ebenfalls beshrieben, um die ben�otigte Rehenzeitzu reduzieren. Die Laufzeit der Implementation ist dabei umgekehrt proportional zurCPU-Geshwindigkeit der verwendeten Computer.Um ein besseres Verst�andnis f�ur geshlossene Stromlinien zu bekommen, wird dergesamte Lebenszyklus geshlossener Stromlinien in zeitabh�angigen Vektorfeldern aufge-zeigt. Dies resultiert in einer r�ohrenf�ormigen Darstellung, die geshlossene Stromlinien�uber die Zeit repr�asentiert. Die Entstehung und das Vershwinden der geshlossenenStromlinie kann einfah untersuht werden, um mehr Einblik in dieses Merkmal zuerhalten.Bei Verbrennungsvorg�angen sind geshlossene Stromlinien in dreidimensionalenStr�omungen ein Indiz f�ur Rezirkulationsbereihe. Diese Bereihe beshreiben Regioneninnerhalb der Str�omung, in denen sih das Gas relativ lange aufh�alt. Dies ist notwendig,damit das Gas vollst�andig verbrennen kann. Aus diesem Grund wird zudem aufgezeigt,wie dieses wihtige Merkmal in dreidimensionalen Vektorfeldern gefunden werden kann.Department of Computer Siene, University of Kaiserslautern, Germany
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Closed Streamlines in Flow Visualization 1
Chapter 1IntrodutionMany of the problems in natural siene and engineering involve vetor �elds. Fluidows, eletri and magneti �elds are nearly everywhere, therefore measurements andsimulations of vetor �elds are inreasing dramatially. As with other data, analysis ismuh slower and still needs improvement. Mathematial methods together with visu-alization an provide help in this situation. In most ases, the sientist or engineer isinterested in integral urves of the vetor �eld like streamlines in uid ows or mag-neti �eld lines. The qualitative nature of these urves an be studied with topologialmethods developed originally for dynamial systems. Espeially in the area of uidmehanis, topologial analysis and visualization have been used with suess [GLL91℄,[HH91℄, [Ken98℄, [SHJK00℄.In visualization, topologial methods mostly are not able to preisely show the exis-tene of losed streamlines. Only stopping riteria like elapsed time, number of integra-tion steps or the length of the streamline are used to prevent the algorithm from runningforever. But losed streamlines play an important role in topologial methods beausethey an at in the same way as soures or sinks; they an attrat or repel the ow.Therefore there is a strong need for an algorithm that is able to detet this importanttopologial feature.Figure 1.1 shows an example of a losed streamline. The streamline is started in theenter of the �gure. After a short while the integrated streamline ends up in a loop sothat the streamline yles around and around. Consequently, the omputation normallywould not terminate without deteting this situation or using an impreise stoppingriterion like the ones mentioned before. The disadvantage with these impreise stoppingriteria is that we annot distinguish between a streamline that spirals very slowly anda streamline that runs into a losed streamline. Therefore, the streamline is stoppedto early in some ases. If we were able to really detet whether we end up in a losedstreamline or not we an ompute the whole streamline. In this ase we additionallyaelerate the integration proess beause we do not yle around the losed streamlineanymore until the stopping riterion is ful�lled.Department of Computer Siene, University of Kaiserslautern, Germany



2 Introdution

Figure 1.1: A losed streamline.There are several appliations for an algorithm that detets losed streamlines. Inombustion proesses, a speial amount of time is neessary for the gas to burn om-pletely. If we have a swirling jet where the gas is injeted we have an inow into a steadymedium. Consequently, we get regions with high turbulene in the resulting ow. Toloate areas where the gas stays very long we an use the losed streamlines in the owindiating those areas whih are alled reirulation zones [Hai99℄.To illustrate the situation we omputed a visualization of a simulated inow intoa swirling jet. Figure 1.2 depits the result. The ow is shown by a LIC image[CL93℄[SH95℄[HS98℄. This method distorts a white noise image by smearing in thediretion of the ow. The inow an be learly identi�ed in the middle of the piture.The turbulent areas at the top and the bottom are emphasized also. Several losedstreamlines an be found in these regions of the vetor �eld drawn in white. Conse-quently, many reirulation zones an be identi�ed by this method where hanes aregood that the gas is able to ompletely burn.Another appliation is the searh for the eye of hurrianes [WFL+00℄. A hurrianeonsists of mainly two regions: the outer region where it has a great and destrutivepower with a irulating ow and the inner area where almost nothing happens. If weprojet the ow that desribes the hurriane onto a horizontal plane these two regionsare divided by a losed streamline. To loate this boundary we only have to omputethe losed streamline of that vetor �eld. As a result we have identi�ed the eye of thehurriane.After desribing the theoretial bakground in the seond hapter whih is neessaryfor the understanding of the new algorithms that are desribed in this thesis, we explainthe algorithm for deteting losed streamlines in a two dimensional vetor �eld in thethird hapter. This algorithm heks during the integration proess if the streamlinereahes an area that annot be left. In suh a ase, we have proven aording to theDepartment of Computer Siene, University of Kaiserslautern, Germany



Closed Streamlines in Flow Visualization 3

Figure 1.2: Reirulation zones in a swirling jet simulation.Poinar�e-Bendixson theorem that there exists a losed streamline in that area. To loatethe exat position of this losed streamline the Poinar�e map is used.Sine it is neessary to ompute many streamlines to �nd every losed streamline in agiven dataset, we show a parallelization of our algorithm that detets losed streamlinesin hapter four. The streamlines that have to be omputed are spread as di�erent tasksto the various lients in a Linux luster. If a losed streamline is deteted the lient sendsbak a visualization of that losed streamline to the server. The server displays all theselosed streamlines. This failitates a faster omputation of all losed streamlines. Theaeleration orresponds to the overall omputation power of the whole Linux luster.Inspired by the books of Abraham and Shaw [AS82℄[AS83℄[AS84℄[AS88℄ we inves-tigate the reation or vanishing of losed streamlines in hapter �ve. A vetor �eldis interpolated over time so that losed streamlines an emerge in speial situations.Department of Computer Siene, University of Kaiserslautern, Germany



4 IntrodutionThese situations are alled bifurations. The losed streamlines are followed over time.This results in a tube shaped visualization that learly shows the evolution of the wholelosed streamline.We also want to detet losed streamlines in a three dimensional vetor �eld. Al-though the priniple is quite similar to the two dimensional ase there exist some essentialdi�erenes. The test if a streamline is able to leave a region is far more diÆult in thethree dimensional ase. This is desribed in detail in hapter seven.
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Closed Streamlines in Flow Visualization 5
Chapter 2Theory of Vetor FieldsThis hapter introdues the fundamental theory whih is needed for the following hap-ters. We mainly follow the desription of Hirsh and Smale [HS74℄. Other desriptionsan be found in [Tri02℄[GH83℄[Gu00℄.2.1 Fundamental TheoryIn order to talk about vetor �elds we need a preise de�nition of what a vetor �eldatual is.De�nition 2.1.1 (Vetor �eld)Let W � Rn be an open subset. An n-dimensional vetor �eld v is de�ned as a mapv : W ! Rn :As we an see from de�nition 2.1.1 a vetor �eld gives us an n-dimensional vetor atan arbitrary position inside W . Vetor �elds our in many appliations. For instane,we may have a ow in a wind tunnel experiment. This ow an be desribed by adynamial system. If we have a massless partile loated at a position x inside theow, a dynamial system tells us where this partile is after a given time t. Thereforea dynamial system should be ontinuously di�erentiable or at least ontinuous andontinuously di�erentiable in t.De�nition 2.1.2 (Dynamial system)Let W � Rn be an open subset. A dynamial system or ow is a C1 map R �W �!W , where � ful�lls the following onditions:1. �(0) is the identity2. �(t) Æ �(s) = �(t+ s) for all t; s 2 RDepartment of Computer Siene, University of Kaiserslautern, Germany



6 Theory of Vetor FieldsWe also write �(t; x) = �t(x).There is a diret oherene between a dynamial system and a vetor �eld shown bythe next remark.Remark 2.1.3Let W � Rn be an open subset and � a dynamial system. Then there exists a vetor�eld v : W 7! Rn that satis�es v(x) = ddt�t(x)��t=0 :Thus, if x0 2 W , v(x0) is the tangent vetor to the urve de�ned by t ! �t(x0) att = 0. From another point of view we an start with a given vetor �eld v. With a givenpoint x0 2 W , this leads us to the Cauhy problem.De�nition 2.1.4 (Cauhy problem)Let v be a vetor �eld as in de�nition 2.1.1 and x0 2 W an arbitrary point. Then theCauhy problem is de�ned by the di�erential equationddtx(t) = v(x(t))with the so alled initial ondition x(0) = x0.Then the dynamial system � satisfying the equation in remark 2.1.3 gives us thesolution urve x(t) = �t(x) for the Cauhy problem.Remark 2.1.5The solution urve is also referred to as a streamline, an integral urve, a traje-tory, or an orbit.
v(x )

x(t)
x  = x(t )0

0

0

Figure 2.1: A solution urve is always tangential to the de�ning vetor �eld.Department of Computer Siene, University of Kaiserslautern, Germany



Closed Streamlines in Flow Visualization 7From a geometrial point of view the trajetory x(t) is a urve whih is alwaystangential to the vetor �eld v. This means that ddtx(t) equals v(x(t)) as shown in�gure 2.1. For every point x0 2 W there exists a unique solution urve whih is shownby the next theorem. But we need a short de�nition �rst.De�nition 2.1.6 (Lipshitz)Let W � Rn be an open subset. Let further v : W ! Rn be a vetor �eld as inde�nition 2.1.1. The vetor �eld v is said to be Lipshitz on W if there exists aonstant K suh that jv(x)� v(y)j � Kjx� yjfor all x; y 2 W . The onstant K is alled Lipshitz onstant for v.Theorem 2.1.7 (Existene and uniqueness)Let v be a vetor �eld as in de�nition 2.1.1 whih is Lipshitz and x0 2 W an arbitrarypoint. Then there exists an a > 0 and a unique solutionx : (�a; a)! Wof the Cauhy problem that satis�es the initial ondition x(0) = x0.Proof:See [HS74℄, pages 162 through 167. ❏It follows diretly from this theorem that streamlines annot ross eah other due tothe uniqueness of solution urves.Corollary 2.1.8 (Crossing streamlines)Let v be a vetor �eld as in de�nition 2.1.1 and x0; y0 2 W two arbitrary points withx0 6= y0. Let further x(t) and y(t) be the solution urves with initial onditions x(0) = x0respetively y(0) = y0. Unless these two solution urves are not idential they do notinterset.Proof:Let x and y be two interseting streamlines whih are not idential. Let further p 2 Wbe the intersetion point. Then there exist t1; t2 2 R with x(t1) = y(t2) = p. Then thereare two streamlines starting at point p whih ontradits to theorem 2.1.7. ❏This orollary is of great importane sine it shows that two di�erent streamlineswill never interset. This feature will be exploited by our algorithm that detets losedstreamlines.De�nition 2.1.9 (Phase portrait)Let v be a vetor �eld as in de�nition 2.1.1 and � the dynamial system assoiated to v.Then the family of all solution urves represents the phase portrait of the dynamialsystem �. Department of Computer Siene, University of Kaiserslautern, Germany



8 Theory of Vetor FieldsIt is also possible to investigate vetor �elds over time. Therefore we de�ne timedependent vetor �elds.De�nition 2.1.10 (Time dependent vetor �eld)Let W � Rn be an open subset. An n-dimensional time dependent vetor �eld vis de�ned as a map v : R �W ! Rn(t; x) 7! v(x)where t is the time parameter.2.2 Data StruturesIn most appliations in Sienti� Visualization the data is not given as a losed formsolution. The same holds for vetor �elds. Usually, the vetor �elds result from asimulation or an experiment where the vetors are measured. In suh a ase, the vetorsare given at only some points of the domain of the Eulidean spae. These points arethen onneted by a grid. A speial interpolation omputes the vetors inside eah ellof the grid. In this hapter we restrit ourselves to the few types of grids that we usedin our algorithms in this setion.2.2.1 Triangular Grids

Figure 2.2: Triangular grid.A very popular two dimensional grid type is the triangular grid. Figure 2.2 showsan example for suh a grid. This grid type failitates to onnet an arbitrary point set.To get the vetors inside a ell we use an interpolation sheme based on baryentriDepartment of Computer Siene, University of Kaiserslautern, Germany
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Figure 2.3: Baryentri oordinates.oordinates. Figure 2.3 explains the on�guration. Let p be the point where we wantto interpolate the vetor and p0, p1, and p2 are the verties of the triangle.The baryentri oordinates b0, b1, and b2 desribe the distanes between the pointpi and the edge whih is opposite to the vertex with the same index. For the baryentrioordinates the equation P2i=0 bi = 1 holds. The point p an be expressed in thefollowing way: p = 2Xi=0 bi � pi :Let v(pi) be the vetors at the verties of the triangle. Then we an interpolate thevetor v(p) at the point p in the same way:v(p) = 2Xi=0 bi � v(pi) :To ompute the zeros inside the triangle we need to solve the following linear equa-tion: 2Xi=0 bi � v(pi) = 0 :Unless this system is degenerated, the solution is unique. Consequently, we get at mostone zero depending on whether the solution point lies inside the triangle or not.Department of Computer Siene, University of Kaiserslautern, Germany



10 Theory of Vetor Fields2.2.2 Quadrilateral Grids

(a) Retilinear grid. (b) Curvilinear grid.Figure 2.4: Quadrilateral grids.There exist two di�erent types of quadrilateral grids. The �rst one is the retilineargrid. There every ell is a retangle. The edges of the ells are orthogonal as shownin �gure 2.4a. The other type is the urvilinear grid. Here the boundary between theells is a urve onsisting of points onneted by straight lines. The boundary of morethan one ell does not need to be a straight line anymore as an be seen in �gure 2.4b.If we interpolate in suh a ell we need to map it to a retangular ell. This map � isnot linear. Often one speaks of mapping from physial spae into omputational spae.Usually, a numerial method is used to do this mapping. Consequently, we an restritourselves to the retangular ase when explaining interpolation in this ase.
p

pp

p
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0 1

3

Figure 2.5: Loal oordinates inside a retangle.We interpolate bilinearly inside eah ell. Therefore, we introdue loal oordinates(r; s) with 0 � s; r � 1 inside the ell of the point p where we want to interpolate.Department of Computer Siene, University of Kaiserslautern, Germany



Closed Streamlines in Flow Visualization 11Figure 2.5 explains how this works. The vertex p0 has loal oordinates (0; 0), thevertex p1 the oordinates (1; 0), the vertex p2 orresponds to (1; 1), while the last vertexp3 is loated at (0; 1). Then we an use the following formula for the interpolation:v(p) = (1� r)(1� s) � v(p0) + r(1� s) � v(p1) + rs � v(p2) + (1� r)s � v(p3) :2.2.3 Tetrahedral Grids

Figure 2.6: Tetrahedron.A tetrahedral grid onsists of several tetrahedrons as shown in �gure 2.6. Conse-quently, a tetrahedral grid is a three dimensional grid. As with triangular grids anarbitrary point set an be onneted using this grid type. The interpolation shemeworks in an analogue way as the triangular ase using baryentri oordinates. Con-sequently, there is at most one zero inside eah tetrahedron, also, if the interpolatingvetor �eld is non-degenerate inside that tetrahedron.2.2.4 Time dependent Data with Prism CellsWhen dealing with time-dependent two-dimensional ows we an use the third dimen-sion to represent time. We assume the vetor �eld is given at time slies on a triangulargrid. These time slies vi : W ! R2 are onneted using prism ells as shown in�gure 2.7. To interpolate the vetors we onsider the following mapf : R �W �! R � R2(t; x) 7! v(t; x)where W is the domain represented by the two dimensional grid of the time slies. Sinewe need onsisteny with the pieewise aÆne linear interpolation that would be appliedon a 2D triangulation, we have to ensure that the restrition of the 3D interpolantto eah time plane is pieewise aÆne linear, too. That means that, �xing the timeDepartment of Computer Siene, University of Kaiserslautern, Germany



12 Theory of Vetor Fields
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Figure 2.7: Time prism ell.oordinate and taking it as a parameter, the interpolant must be aÆne linear. This isthe reason why we hoose the following interpolant inside eah prism ell.For a given prism ell lying between ti and ti+1, let vj(x) = Ajx + bj, j 2 fi; i + 1gbe the linear interpolation orresponding to the prism triangle faes lying in the planesft = tig and ft = ti+1g respetively. Then we de�ne the interpolant over the wholeprism ell by linear interpolation over time:v(t; x) = ti+1 � tti+1 � ti vi(x) + t� titi+1 � tivi+1(x)where t 2 [ti; ti+1℄. This formula obviously ensures, for eah �xed value of t, that v(x; t)is aÆne linear in x.2.3 Critial PointsCritial points are from a topologial point of view an important part of vetor �elds.This speial feature is desribed in more detail in this setion. We �rst explain thegeneral ase and then study the linear ase.2.3.1 General CaseWe start with the de�nition of ritial points in the general ase. Then we lassifydi�erent types of singularities and talk about stability whih is neessary to ahieve aDepartment of Computer Siene, University of Kaiserslautern, Germany



Closed Streamlines in Flow Visualization 13meaningful physial interpretation of vetor �elds.De�nition 2.3.1 (Critial point)Let v : W ! Rn be a vetor �eld as in de�nition 2.1.1 whih is ontinuously di�eren-tiable. Let further x0 2 W be a point where v(x) = 0. Then x0 is alled a ritialpoint of the vetor �eld.Remark 2.3.2There are several di�erent terms for ritial points. They are also known as singular-ities, singular points, zeros, or equilibriums.2.3.1.1 Classi�ationCritial points an be lassi�ed using the eigenvalues of the derivation of the vetor�eld. For instane, we an identify sinks that purely attrat the ow in the viinitywhile soures repel it purely.De�nition 2.3.3 (Sink)Let v be a vetor �eld as in de�nition 2.1.1 whih is ontinuously di�erentiable and x0a ritial point of v. Let further Dv(x0) be the derivation of the vetor �eld v at x0. Ifall eigenvalues of Dv(x0) have negative real parts, x0 is alled a sink.The following theorem shows that sinks really have an attrating property.Theorem 2.3.4Let v : W ! Rn be a vetor �eld and x0 a sink. Let further � be the orrespondingdynamial system. Let us assume the real part of every eigenvalue is less than �, > 0. Then there exists a neighborhood U � W of x0 suh that1. �t(x) 2 U for all x 2 U , t > 0.2. There is an Eulidean norm on Rn suh thatj�t(x)� x0j � e�tjx� x0jfor all x 2 U , t � 0.3. For any norm on Rn , there is a onstant B > 0 suh thatj�t(x)� x0j � Be�tjx� x0jfor all x 2 U , t � 0.Proof:See [HS74℄, pages 181 and 182. ❏Department of Computer Siene, University of Kaiserslautern, Germany



14 Theory of Vetor FieldsCorollary 2.3.5Let v, �, and xo be as in the previous theorem. Then there exists a neighborhood U � Wof x0 so that �t(x) onverges to x0:�t(x)! x0 as t!1 for all x 2 UIn the same way we an de�ne soures.De�nition 2.3.6 (Soure)Let v be a vetor �eld as in de�nition 2.1.1 whih is ontinuously di�erentiable and x0a ritial point of v. Let further Dv(x0) be the derivation of the vetor �eld v at x0. Ifall eigenvalues of Dv(x0) have positive real parts, x0 is alled a soure.2.3.1.2 StabilitySine in omputer siene absolute exat alulation is not possible due to numerialerrors we need some sort of stability if we really want to lassify ritial points algorith-mially. A ritial point that hanges its behavior even when the vetor �eld is slightlyperturbed does not have a very signi�ant meaning in a physial sense.
U

1U

x 0

Figure 2.8: A ritial point that is stable.De�nition 2.3.7 (Stable ritial point)Let v : W ! Rn be a vetor �eld as in de�nition 2.1.1 whih is ontinuously di�erentiableand x0 a stable ritial point of v. If for every neighborhood U � W of x0 there is aneighborhood U1 � U of x0 suh that every streamline x(t) with x(0) 2 U1 is de�ned andx(t) 2 U for all t > 0 then x0 is alled a stable ritial point.Figure 2.8 illustrates a stable on�guration.Department of Computer Siene, University of Kaiserslautern, Germany



Closed Streamlines in Flow Visualization 15
U

1U

x 0

Figure 2.9: An asymptotially stable ritial point.De�nition 2.3.8 (Asymptotially stable ritial point)Let v, U , and U1 be as in the previous de�nition. If in addition U1 an be hosen sothat limt!1 x(t) = x0 then x0 is alled an asymptotially stable ritial point.In �gure 2.9 we sketh this situation.
U

x 0

Figure 2.10: A ritial point that is unstable.De�nition 2.3.9 (Unstable ritial point)Let v :W ! Rn be a vetor �eld as in de�nition 2.1.1 whih is ontinuously di�erentiableand x0 a stable ritial point of v. We all a ritial point that is not stable an unstableritial point. This means that there is a neighborhood U � W of x0 suh that for everyDepartment of Computer Siene, University of Kaiserslautern, Germany



16 Theory of Vetor Fieldsneighborhood U1 � U of x0 there is at least one streamline x(t) starting at x(0) 2 U1whih does not ompletely lie in U .Figure 2.10 shows an unstable ritial point.
Figure 2.11: A ritial point that is stable but not asymptotially stable.For example, a sink is an asymptotially stable ritial point and therefore stable.An example of a ritial point that is stable but not asymptotially stable is shown in�gure 2.11. All streamlines surround the ritial point elliptially. This on�gurationis rather ritial beause the slightest perturbation will hange the ritial point into asoure or a sink. Therefore, we want to distinguish between suh numerially ritialsituations and numerially stable ones.Theorem 2.3.10Let v be a vetor �eld as in de�nition 2.1.1 whih is ontinuously di�erentiable and x0a stable ritial point of v. Then no eigenvalue of Dv(x0) has positive real part.Proof:See [HS74℄, pages 187 and 188. ❏To have a ommon term for suh numerially stable on�gurations we use the notionof hyperboliity.De�nition 2.3.11 (Hyperboli ritial point)Let v be a vetor �eld as in de�nition 2.1.1 whih is ontinuously di�erentiable and x0a ritial point of v. If the derivative Dv(x0) has no eigenvalue with real part zero theritial point is alled hyperboli.Corollary 2.3.12A hyperboli ritial point is either unstable or asymptotially stable.This orollary shows that hyperboli ritial points avoid numerially ritial situa-tions. These points an be deteted algorithmially sine the behavior does not signi�-antly hange if there is a numerial error that is small enough.Department of Computer Siene, University of Kaiserslautern, Germany



Closed Streamlines in Flow Visualization 172.3.2 Linear CaseSine we use linear or bilinear interpolation in our algorithms we want to analyze thelinear ase in more detail. This also gives a better insight into the di�erent types ofritial points. Therefore we examine ritial points in linear vetor �elds. First of all,we need to de�ne what we exatly mean by a linear vetor �eld.De�nition 2.3.13 (Linear vetor �eld)Let W � Rn be an open subset. A vetor �eldv : W ! Rnis alled linear, if there exists a linear mapA : W ! Rnand a vetor b 2 Rn suh that v(x) = Ax+ b 8x 2 Wif in addition b = 0 then v is alled homogeneous linear.To get a better insight into linear vetor �elds we investigate the phase portrait ofthe di�erent types of linear vetor �elds. If we restrit ourselves to the hyperboli asewhere detA 6= 0 the vetor b only gives a displaement so that we an neglet it in ouronsideration. Nielson [NJ99℄ summarized all di�erent ases that are possible. A linearvetor �eld an have at most one ritial point due to the linearity. In order to get thephase portrait we have to solve the Cauhy problemddtx(t) = Axwith initial ondition x(0) = k, k 2 Rn .Lemma 2.3.14Let v be a homogeneous linear vetor �eld, whih is desribed by the matrix A 2Mat(n�n). Then there exists a solution for the di�erential equationddtx(t) = Ax(t) with initial ondition x(0) = k 2 Rn (2.1)whih is given by: x = etAk with eA = 1Xk=0 Akk! (2.2)Department of Computer Siene, University of Kaiserslautern, Germany



18 Theory of Vetor FieldsProof:Compute the derivation ddtx(t):ddtetAk = k � ddtetA = k � AetAsine the derivation of etA an be omputed as follows:ddtetA = limh!0 e(t+h)A � etAh= limh!0 etAehA � etAh= etA limh!0 ehA � Ih= etA � A
❏Let us have a loser look at two dimensional linear vetor �elds whih an be de-sribed by a matrix A 2 Mat(2 � 2). Then, we an distinguish between di�erent aseswhere we are able to ompute the derivation.Lemma 2.3.15Let A 2 Mat(2 � 2) be a two dimensional matrix. Then there is an invertible matrixP suh that B = PAP�1, where B orresponds to one of the following three di�erenttypes. �; � 2 C are the eigenvalues of A.Type one: A is diagonalizable: B = �� 00 ��Type two: � and � have non zero imaginary part:B = �a �bb a �Type three: � = � and A is not diagonalizable:B = �� 01 ��The next subsetions desribe the di�erent types in detail. The di�erential equationis solved to sketh the phase portrait. We assume that the matries of the vetor �eldsare given in the form as shown in lemma 2.3.15.Department of Computer Siene, University of Kaiserslautern, Germany



Closed Streamlines in Flow Visualization 192.3.2.1 Linear Vetor Fields of Type OneLemma 2.3.16Let v be a vetor �eld of type one as desribed in lemma 2.3.15. Then the followingequation holds for the streamline x, where k = �k1k2� is a point on the streamline.x(t) = �et�k1et�k2� (2.3)Proof:A phase portrait of a vetor �eld of type one an be desribed in priniple in the followingway. A = �� 00 ��Compute etA: etA = 1Xk=0 (tA)kk!= 1Xk=0 �t� 00 t��kk!= 1Xk=0 � t�k! 00 t�k!�k=  P1k=0 (t�)kk! 00 P1k=0 (t�)kk! != �et� 00 et��Altogether we get the following equation desribing the streamline.x(t) = �et�k1et�k2�
❏Therefore, we mainly get three di�erent ases besides hanging the orientation of thevetor �eld.1st ase: (� > 0 > �) In this ase we get the so alled saddle singularity, whih isshown in �gure 2.12.Department of Computer Siene, University of Kaiserslautern, Germany



20 Theory of Vetor Fields

Figure 2.12: A saddle singularity.

Figure 2.13: A node singularity.2nd ase: (� < � < 0) An example for this ase is the so alled node singularityshown in �gure 2.13.3rd ase: (� = � < 0) Figure 2.14 shows suh a fous singularity.2.3.2.2 Linear Vetor Fields of Type TwoThe matrix A that represents the vetor �eld mathematially desribes a rotation anda saling. This an be shown easily when we de�ne a rotational angle � := aros(ar )where we set r := pa2 + b2. We an dedue that:a = r os� (2.4)b = r sin� (2.5)Then we an write the matrix A as follows:A = �r 00 r� � �os� � sin�sin� os� � (2.6)Department of Computer Siene, University of Kaiserslautern, Germany



Closed Streamlines in Flow Visualization 21

Figure 2.14: A fous singularity.Lemma 2.3.17Let v be a vetor �eld of type two. Then the following equation desribes a streamlinewhere k = �k1k2� is a point on the streamline.x(t) = eta � �k1os(tb)� k2sin(tb)k1sin(tb) + k2os(tb)� (2.7)Proof:We interpret the map T given by the matrix A algebraially by identifying R2 with theomplex spae C . (x; y)$ x+ iy (2.8)We get the following orrespondene for T :(x; y)  ! x+ iyx?yT x?yMultiplying with a+ib(ax� by; bx + ay)  ! (ax� by) + i(bx + ay) (2.9)In the same way there is a orrespondene eA $ ea+b. This results with eA = �a1 a2a3 a4�in the following sheme:(x; y)  ! x+ iyx?yeA x?yea+ib(a1x+ a2y; a3x + a4y)  ! ea(x os b� y sin b+ i(x sin b + y os b)) (2.10)By omparing the oeÆients we an onlude that the matrix eA an be representedas follows: eA = ea � �os b � sin bsin b os b �Department of Computer Siene, University of Kaiserslautern, Germany



22 Theory of Vetor FieldsAording to lemma 2.3.14 the following equation holds for a streamline ontaining thepoint k = �k1k2�. x(t) = eta ��k1os(tb)� k2sin(tb)k1sin(tb) + k2os(tb)� (2.11)
❏

Figure 2.15: A enter singularity.

Figure 2.16: A spiral singularity.With this equation we an see how the streamlines behave in suh a vetor �eld. Ifwe have a = 0, the vetor �eld desribes simple irles as shown in �gure 2.15, while weget a spiral shaped phase portrait if we set a 6= 0 as skethed in �gure 2.16.Department of Computer Siene, University of Kaiserslautern, Germany



Closed Streamlines in Flow Visualization 232.3.2.3 Linear Vetor Fields of Type ThreeLemma 2.3.18Let v be a vetor �eld of type three and A the orresponding matrix where v(x) = Axand A = �� 01 ��. Then we an desribe a streamline ontaining the point k = �k1k2� withthe following equation: x(t) = et� � � k1k1t + k2� (2.12)Proof:The matrix A an be split up in the following way:A = �� 01 �� = � � I + �0 01 0�For the matrixM = �0 01 0� the following equation holds whih an be easily omputed.M2 = �0 00 0� = 0Consequently, we get Mk = 0 for all k � 2.Then we an ompute etA as follows:etA = et(�I+M)= et�I+0�0 0t 01A= et�I � e0�0 0t 01A= et�I � (I + �0 0t 0�) , using the above equation= et� � �1 0t 1�Therefore, the following equation desribes a streamline ontaining the point k = �k1k2�.x(t) = et� � � k1k1t + k2� (2.13)
❏Figure 2.17 shows an example for suh an improper node singularity.Department of Computer Siene, University of Kaiserslautern, Germany



24 Theory of Vetor Fields

Figure 2.17: An improper node singularity.2.4 Streamline ComputationIn this setion we desribe the omputation of streamlines. Sine the vetor �eld isgiven on a triangular, quadrilateral, or tetrahedral grid the vetors inside the ells areinterpolated linearly respetively bilinearly. In order to ompute a streamline we haveto solve the Cauhy problem where the initial ondition is given by the starting pointof the streamline. Therefore we need to solve a di�erential equation. Consequently, thestreamlines itself have to be alulated using ODE solvers like for instane Runge-Kutta.The streamlines an be integrated in positive or negative diretion starting at the givenstarting point. To integrate in negative diretion we only need to invert the vetor �eld.In addition, it is possible to ompute streamlines exatly inside triangular ells.2.4.1 Numerial ComputationFor numerial integration we use standard methods that an be found in the numerialliterature [Tri02℄[Feh69℄[PTVF92℄[Gu00℄. We favor preditor-orretor methods likeRunge-Kutta method with adaptive stepsize. An optimized implementation for a �fthorder Runge-Kutta method with adaptive stepsize an be found in [PTVF92℄. Thesemethods only use the interpolation method inside the ells but do not depend on aspeial type of grid.2.4.2 Exat ComputationOn a triangular grid the vetor �eld is interpolated linearly. Inside a triangular ell wean represent the vetor �eld as a single linear vetor �eld as in subsetion 2.3.2. Inthis subsetion we also explained an exat solution of the di�erential equation that hasto be solved in order to ompute a streamline. This method was �rst introdued byNielson [NHM97℄. Consequently, we an alulate a streamline starting at an arbitraryDepartment of Computer Siene, University of Kaiserslautern, Germany



Closed Streamlines in Flow Visualization 25starting point using these formulas inside a triangle. When the streamline leaves thetriangle we determine the intersetion with one of the edges of the triangle numerially.Then we an start the integration proess in the neighboring ell at that intersetion.This way we an go from one triangle to another.2.5 Closed StreamlinesWhen omputing streamlines it often happens that the streamline omputation doesnot terminate. This is mostly due to losed streamlines where the streamline ends upin a loop that annot be left. These losed streamlines are introdued and explainedin this setion. More about the theoretial bakground an be found in several books[YqSlLs+86℄[Rou98℄.2.5.1 Limit SetsThe topologial analysis of vetor �elds onsiders the asymptoti behavior of streamlines.There we have two di�erent kind of so alled limit sets, the origin set or �-limit set ofa streamline and the end set or !-limit set.De�nition 2.5.1 (�-limit set)Let s be a streamline in a given vetor �eld v. Then we de�ne the �-limit set as thefollowing set: fp 2 R2 j9(tn)1n=0 � R; tn ! �1; limn!1 s(tn)! pgDe�nition 2.5.2 (!-limit set)Let s be a streamline in a given vetor �eld v. Then we de�ne the !-limit set as thefollowing set: fp 2 R2 j9(tn)1n=0 � R; tn !1; limn!1 s(tn)! pgRemark 2.5.3Let v be a vetor �eld as in de�nition 2.1.1. We speak of an �- or !-limit set L of v ifthere exists a streamline s in the vetor �eld v that has L as �- or !-limit set.If the �- or !-limit set of a streamline onsists of only one point, this point is a ritialpoint. The most ommon ase of a �- or !-limit set in a planar vetor �eld ontainingmore than one inner point of the domain is a losed streamline whih is delared in thenext de�nition. Figure 2.18 shows an example for �- and !-limit sets. Here we have aritial point and a losed streamline. The ritial point and the losed streamline aretheir own �- and !-limit set. For every other streamline the losed streamline is the!-limit set. If the streamline starts inside the losed streamline the ritial point is theDepartment of Computer Siene, University of Kaiserslautern, Germany



26 Theory of Vetor Fields
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Figure 2.18: Example for �- and !-limit sets.�-limit set. Otherwise the �-limit set is empty. Now that we showed an example for alosed streamline let us give a preise de�nition.De�nition 2.5.4 (Closed streamline)Let v be a vetor �eld as in de�nition 2.1.1. A losed streamline  : R ! Rn ; t 7! (t)is a streamline of a vetor �eld v suh that there is a t0 2 R with(t+ nt0) = (t) 8n 2 Nand  not onstant.Remark 2.5.5There are several di�erent terms desribing a losed streamline. The terms limit yle,losed orbit, and losed streamline are equivalent.Similar to ritial points we de�ne asymptotially stability of losed streamlines. Ifa losed streamline is asymptotially stable it is attrating.De�nition 2.5.6 (Asymptotially stability of losed streamlines)Let v : W ! Rn be a vetor �eld as in de�nition 2.1.1 that is ontinuously di�erentiable.Let further � be the orresponding dynamial system and  � W a losed streamline. Iffor every neighborhood U � W with  � U there is a neighborhood U1 � U with  � U1suh that �t(x) 2 U for all x 2 U1 and t > 0 andlimt!1minfk�t(x)� zkjz 2 g = 0then  is alled asymptotially stable losed streamline.This means that an asymptotially stable losed streamline attrats the ow inside aspeial neighborhood. It also follows from this de�nition that an asymptotially stablelosed streamline is isolated from other losed orbits. In the same way there are losedstreamlines that are repelling. For instane, by inverting the vetor �eld we an turnan attrating losed streamline into a repelling one.Department of Computer Siene, University of Kaiserslautern, Germany



Closed Streamlines in Flow Visualization 272.5.2 Poinar�e Map
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S(b)Figure 2.19: Poinar�e setion (a) and Poinar�e map (b).Let us assume we have a two dimensional vetor �eld ontaining one limit yle.Then we an hoose a point P on the limit yle and draw a ross setion S whih isa line segment not parallel to the limit yle aross the vetor �eld. This line is alleda Poinar�e setion. If we start a streamline at an arbitrary point x on S and followit until we ross the Poinar�e setion S again, we get another point R(x) on S. Thisresults in the Poinar�e map R. Figure 2.19 illustrates the situation. The left part showsthe Poinar�e setion with the limit yle in the middle drawn with a thiker line, whilethe right part displays the Poinar�e map itself. Obviously the point P on the limit yleis mapped onto itself. Consequently, it is a �xed point of the Poinar�e map.Let us preise this in some de�nitions:De�nition 2.5.7 (Cross setion)Let v be a vetor �eld as in de�nition 2.1.1 and S � Rn an open set on a hyperplaneof dimension n� 1 that is transverse to v. Transverse to v means that v(x) =2 S for allx 2 S. Then S is alled a ross setion.De�nition 2.5.8 (Poinar�e map)Let v be a vetor �eld and � the dynamial system belonging to v. Let further be S aross setion that intersets a losed streamline at a point P . Then the Poinar�e mapis de�ned as the map R : S ! S suh thatx 7! �t(x) ;Department of Computer Siene, University of Kaiserslautern, Germany



28 Theory of Vetor Fieldswhere t is the time the streamline started at x needs to interset the ross setion againafter one turn.Remark 2.5.9It is obvious that the point P on the losed streamline is a �xed point of the Poinar�emap.2.5.3 The Poinar�e-Bendixson TheoremIn this subsetion we show a fundamental result whih makes it easier to �nd losedstreamlines in a two dimensional vetor �eld. This property is exploited by our algorithmwhih is introdued later.Theorem 2.5.10 (Poinar�e-Bendixson Theorem)Let W � R2 be an open subset and v : W ! R2 a two dimensional, ontinuouslydi�erentiable vetor �eld. Let further L � W be a nonempty ompat limit set of thevetor �eld v that ontains no ritial point. Then L desribes a losed streamline.Proof:See [HS74℄, pages 248 and 249. ❏Corollary 2.5.11Let W � R2 be an open subset and v : W ! R2 a two dimensional, ontinuouslydi�erentiable vetor �eld. Let further D � W be a nonempty ompat subset whihontains no ritial point and s a streamline inside D. If the streamline s does not leaveD then there exists a losed streamline inside D.Using this orollary our algorithm to detet losed streamlines an simply integratea streamline and hek during the integration proess if it runs into a ompat regionthat is never left. If we �nd suh a region this orollary states that we found a losedstreamline.2.6 Vetor Field TopologyThe topologial graph, or simply topology, of a vetor �eld desribes the struture ofthe phase portrait. Considering saddle singularities we an de�ne separatries.De�nition 2.6.1 (Separatries)Let v be a vetor �eld as in de�nition 2.1.1 and x0 a saddle singularity. The streamlinesemerging in eigendiretion are alled separatries.Department of Computer Siene, University of Kaiserslautern, Germany



Closed Streamlines in Flow Visualization 29Eah separatrix onnets the saddle point with another ritial point or the boundaryof the vetor �eld. The separatries divide the vetor �eld in various topologial regions.Eah region annot be left by an individual streamline exept for the ase where thestreamline rosses the boundary. Furthermore, every streamline in that region thatdoes not reah the boundary onverges to the same ritial point or losed streamlinefor t ! 1 and to the same ritial point or losed streamline for t ! �1. Now weintrodued every onept needed for vetor �eld topology.De�nition 2.6.2 (Topology)Let v be a vetor �eld as in de�nition 2.1.1. The topology is built by all ritial points,separatries and losed streamlines of v.

(a) (b)Figure 2.20: Topologial graphs of two vetor �elds.Figure 2.20 shows two examples for topologial graphs of a simple vetor �eld. Theritial points are olored aording to its type: saddles are drawn in red, sinks are bluewhile soures are olored green. The vetor �eld in sub�gure (a) ontains one losedstreamline while the other sub�gure does not ontain any losed streamlines. In bothpitures we an learly reognize the priniple struture of the ow inside the vetor�elds. Department of Computer Siene, University of Kaiserslautern, Germany



30 Theory of Vetor Fields2.7 Strutural StabilityIf a vetor �eld is slightly perturbed it may happen that the topology stays the same if thehange is suÆiently small. This means that there exists a homeomorphism that mapseah streamline of the original ow to the perturbed one. This homeomorphism gives aone-to-one orrespondene between ritial points and losed streamlines of the ow. Ifsuh a homeomorphism exists we say that the two ows are topologially equivalent.De�nition 2.7.1 (Topologially equivalent)Let v and w be two vetor �elds as in de�nition 2.1.1. Let further � and  be thedynamial system aording to v respetively w. If there exists a homeomorphism h :Rn ! Rn suh that for any t1 there is a t2 withh(�t1(x)) =  t2(x)then v and w are topologially equivalent.To de�ne neighboring vetor �elds we need a norm on vetor �elds �rst. Then wean de�ne neighboring vetor �elds as vetor �elds that di�er only slightly.De�nition 2.7.2Let v be vetor �eld as in de�nition 2.1.1 that is ontinuous di�erentiable. Then thenorm kvk of a vetor �eld is de�ned as kvk = max(fkv(x)kjx 2 Wg [ fkDv(x)kjx 2Wg). We allow kvk =1.De�nition 2.7.3 (Neighborhood)Let v be a vetor �eld as in de�nition 2.1.1 that is ontinuous di�erentiable. Let furtherN = fw 2 fvjv : W ! Rngjkv � wk < �g. This means that every vetor �eld w 2 N isa perturbed version of v. Then N is alled a neighborhood of v.If there exists a neighborhood N of a given vetor �eld v where every vetor �eld istopologially equivalent to the other, the vetor �eld v is alled strutural stable. Thismeans that the topology of the vetor �eld that is slightly perturbed stays the same.The following de�nition preises that.De�nition 2.7.4 (Strutural stable)Let v be a vetor �eld as in de�nition 2.1.1. If there is a neighborhood N of v suhthat every vetor �eld w 2 N is topologially equivalent to v then v is alled struturalstable.We now want to give a theorem that explains when a two dimensional vetor �eldis strutural stable. But �rst we need a de�nition whih shows a speial on�gurationonerning saddle singularities. Vetor �elds ontaining suh a on�guration an neverbe strutural stable.Department of Computer Siene, University of Kaiserslautern, Germany



Closed Streamlines in Flow Visualization 31

(a) Heterolini onnetion (b) Homolini onnetionFigure 2.21: Saddle onnetions.De�nition 2.7.5 (Saddle onnetions)Let v be a vetor �eld as in de�nition 2.1.1 and s1 and s2 two saddle singularitiesof v. If a separatrix onnets s1 and s2 then this separatrix is alled a heterolinionnetion. If a separatrix onnets s1 with itself this separatrix is alled homolinionnetion.Figure 2.21 shows the two di�erent on�gurations. The next theorem shows thatfor strutural stability in a two dimensional vetor �eld it is neessary that the ritialpoints and losed streamlines need to be hyperboli. Additionally, saddle onnetionsare not allowed.Theorem 2.7.6Let v : W ! R2 a vetor �eld as in de�nition 2.1.1 with a �nite number of ritialpoints and losed streamlines. Then v is struturally stable if and only if1. all ritial points of v are hyperboli.2. eah losed streamline of v is either repelling or attrating.3. there are no saddle onnetions.Proof:See [HS74℄, pages 314 through 317. ❏2.8 BifurationsClosed streamlines are introdued in the �eld by strutural hanges. When a vetor �eldhanges over time there may be a hange in the topology from one state to another.Department of Computer Siene, University of Kaiserslautern, Germany



32 Theory of Vetor FieldsThis, of ourse, implies that the vetor �eld is not struturally stable in that ase. Theunstable state in between is alled a bifuration. This hange may only a�et one ritialpoint and its nearer surrounding. Then we all it a loal bifuration. The other ase isa global bifuration where the global struture of the ow is hanged.Here we onsider only bifurations that result in the reation or vanishing of a losedstreamline. The main types are the Hopf Bifuration whih is a loal bifuration andthe Periodi Blue Sky in 2D Bifuration whih is a global one.

(a) (b) ()

(d) (e)Figure 2.22: Hopf bifuration.
Department of Computer Siene, University of Kaiserslautern, Germany



Closed Streamlines in Flow Visualization 332.8.1 Hopf BifurationLet us assume that we are given an attrating fous as in �gure 2.22a so that a stream-line spirals around this ritial point and �nally onverges to it. If the attrating e�etweakens the number of rotations of the streamline will inrease as in �gure 2.22b. Con-tinuing with this proess the attrating fous beomes a enter point (�gure 2.22) whihis an unstable struture: the Hopf bifuration has ourred. Going further, the struturebeomes stable again and we have now a repelling fous. Sine the global struture ofthe ow has not hanged, we still have an inow from the outside and a ow starting atthe ritial point. Consequently, a losed streamline appears aording to the Poinar�e-Bendixson-Theorem [GH83℄ as in �gure 2.22d and 2.22e. Inverting the diretion of time,we get a transition from a losed streamline with a repelling fous inside into an attrat-ing fous over an instantaneous enter where the losed streamline vanishes. Similartransitions are obtained by inverting the diretion of the ow, i.e. by replaing souresby sinks. (It may be noted that we an apply the Poinar�e-Bendixson-theorem only ifthe vetor �eld is ontinuous. Further we have a region without ritial points.)2.8.2 Periodi Blue Sky in 2D Bifuration

(a) (b) ()Figure 2.23: Periodi Blue Sky in 2D.In this type of bifuration there are two di�erent types of ritial points involved:a saddle and an attrating fous. Figure 2.23a shows the situation. As the attratinge�et of the fous gets weaker and weaker we see a homolini onnetion after sometime where the saddle is onneted to itself as shown in �gure 2.23b. This results in abifuration: when this on�guration breaks up again we �nd a limit yle whih simplyappears out of the blue. The reason for the ourrene of the losed streamline is that theattrating fous is totally una�eted by the whole event. Sine there is an outow to theritial point inside and to the saddle there must be a ritial point or a losed streamlinein this region aording to the Poinar�e-Bendixson theorem. Beause of the fat thatDepartment of Computer Siene, University of Kaiserslautern, Germany



34 Theory of Vetor Fieldsthere are only the two ritial points a losed streamline emerged. This on�gurationis shown in �gure 2.23. Other bifurations of the same type an be onstruted byinverting time or replaing the attrating fous with a repelling one.
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Closed Streamlines in Flow Visualization 35
Chapter 3State of the ArtFlows our in various di�erent forms in siene and engineering. For instane, a windtunnel experiment results in suh a ow. The path of the air desribes how the owbehaves around a speial objet as, for example, a ar. Inows into speial parts, like athrust hamber, are of interest also. There, the ow desribes the injetion of the gas.The omposition of gas and oxygen is very important in ombustion proesses. A betterinsight into the ow an help optimizing this proess.Several visualization methods are available at present. Here, we onentrate ondesribing these methods that are useful in our appliation area. An overview over thevarious visualization methods an also be found in other publiations [GLW97℄ and PhDtheses [L�of98℄[Tri02℄.3.1 Vetor Field VisualizationVarious methods exist that show di�erent aspets of vetor �elds. Hedgehog methods[PvW93℄ draw arrows tangential to the ow. Eah arrow represents a vetor at thatposition. The length shows the veloity. The priniple struture of the ow an bereognized using this method. But speial features like losed streamlines an easily beoverseen. In the three dimensional ase, olusion problems our so that an analysis ofthe vetor �eld is diÆult with this method.Texture based methods visualize the whole phase portrait. There are mainly twodi�erent methods for reating the texture: spot noise [vW91℄[dLvW95℄[dLPV96℄ and lineintegral onvolution (LIC) [CL93℄. To reate a spot noise texture, randomly weightedand positioned spots are aumulated. The shape of the spots ontrols the textureloally. If we align, for instane, the larger axis of the spots parallel to the ow diretionthe resulting texture visualizes the vetor �eld. The LIC method uses a white noisetexture as a basis. This texture gets smeared in the ow diretion: another texture isreated where for every pixel a short streamline is omputed and the olor values ofDepartment of Computer Siene, University of Kaiserslautern, Germany



36 State of the Art

Figure 3.1: Vetor �eld ontaining a losed streamline visualized using the LIC method.
eah pixel of the white noise texture that is rossed by this streamline is summed up.Figure 3.1 shows an example of a LIC image.Many extensions [KB96℄[SJM96℄ and performane optimizations [SH95℄[SZH96℄ existfor this method. To introdue orientation information oriented line integral onvolution(OLIC) was proposed by Wegenkittl et al. [WG97℄[WGP97℄. For time-dependent owsthe standard method is not suitable beause it results in a ikering animation. There-fore some extensions exist [Lan93℄[FC95℄ like for instane unsteady ow line integralonvolution (UFLIC) [SK97℄[SK98℄. This method is based on the fast LIC algorithm[SH95℄. The di�erene is in the onvolution kernel: to ahieve temporal oherene onlythe pixel alulations with a smaller time-stamp than the atual one are onsidered.To trak a partile in the ow over time streamlines, streaklines, and pathlines[Han93℄[Lan94℄ are used. A streamline shows the path of a massless partile in the ow. Suha partile follows the trajetory of the dynamial system. A streakline visualizes thepath of dye injeted for a period of time at a �xed position into a time dependent owwhile a pathline only follows a single partile. A partile orresponds to a point movingthrough the ow. If we use more general objets like lines, irles, or impliit surfaesstreamsurfaes, streamribbons, streamtubes, or streamballs are reated [BDH+94℄.Also, an n-sided polygon an be plaed perpendiular to the ow and moved along thetrajetory [SVL91℄. This method additionally depits loal ow attributes, like rotationand shear.Department of Computer Siene, University of Kaiserslautern, Germany



Closed Streamlines in Flow Visualization 373.2 Topologial MethodsTopologial methods depit the struture of the ow by onneting soures, sinks, andsaddle singularities with separatries. Critial points were �rst investigated by Perry[PF74℄[Per84℄[PC87℄, Dallmann [Dal83℄, Chong [CPC90℄ and others. The method itselfwas �rst introdued in visualization for two dimensional ows by Helman and Hesselink[HH89b℄[HH89a℄[HH90℄[HH91℄[Hel97℄. Several extensions to this method exist. Sheuer-mann et al. [SHJK00℄ extended the method to work on a bounded region. To get thewhole topologial skeleton of the vetor �eld, points on the boundary have to be takeninto aount, also. These points are alled boundary saddles. To reate a time depen-dent topology for two dimensional vetor �elds, Helman and Hesselink [HH91℄ use thethird oordinate to represent time. This results in surfaes representing the evolutionof the separatries. A similar method is proposed by Triohe et al. [TSH01℄[TWSH02℄but this work fouses on traking singularities through time. Although losed stream-lines an at in the same way as soures or sinks, they are ignored in the onsiderationsof Helman and Hesselink and others.

Figure 3.2: Streamsurfae inside the blunt �n dataset from NASA [HB90℄.To extend this method to three dimensional vetor �elds, Globus et al. [GLL91℄ pre-sented a software system that is able to extrat and visualize some topologial aspetsof three dimensional vetor �elds. The various ritial points are haraterized using theeigenvalues of the Jaobian. This tehnique was also suggested by Helman and Hesselink[HH91℄. But the whole topology of a three dimensional ow is not yet available. There,streamsurfaes are required to represent separatriies. A few algorithms for omputingDepartment of Computer Siene, University of Kaiserslautern, Germany



38 State of the Artstreamsurfaes exist [Hul92℄[SBH+01℄ but are not yet integrated in a topologial algo-rithm. Figure 3.2 shows a streamsurfae inside the famous blunt �n dataset providedby NASA [HB90℄ onstruted with the algorithm by Sheuermann et al. [SBH+01℄.3.3 Closed Streamlines in VisualizationThere are some algorithms to �nd losed streamlines in dynamial systems that an befound in the numerial literature. Aprille and Trik [AT72℄ proposed a so alled shootingmethod. There, the �xed point of the Poinar�e map is found using a numerial algo-rithm like Newton-Raphson. Dellnitz et al. [DJ99℄ detet almost yli behavior. It is astohastial approah where the Frobenius-Perron operator is disretized. This stohas-tial measure identi�es regions where trajetories stay very long. But these mathemat-ial methods typially depend on ontinuous dynamial systems where a losed formdesription of the vetor �eld is available. This is usually not the ase in visualizationand simulation where the data is given on a grid and interpolated inside the ells. VanVeldhuizen [vV87℄ uses the Poinar�e map to reate a series of polygons approximatingan attrating losed streamline. The algorithm starts with a rough approximation ofthe losed streamline. Every vertex is mapped by the Poinar�e map iteratively to get a�ner approximation. Then, this series onverges to the losed streamline.To get a hierarhial approah for the visualization of invariant sets, and thereforelosed streamlines also, B�urkle et al. [BDJ+99℄ enlose the invariant set by a set ofboxes. They start with a box that surrounds the invariant set ompletely. This box issuessively biseted in yling diretions. It is always ensured that the result still in-ludes the omplete invariant set. Using this bisetion, an approximation of the invariantset is �nally found whih an be rendered using a volume renderer. The publiation ofGukenheimer [Gu00℄ gives a detailed overview onerning invariant sets in dynamialsystems.Some publiations deal with the analysis of the behavior of dynamial systems.Shemati drawings showing the various kinds of losed streamlines an be found in thebooks of Abraham and Shaw [AS84℄[AS88℄. Fishel et al. [FDM+97℄ presented a asestudy where they applied di�erent visualization methods to dynamial systems. In theirappliations also strange attrators, like the Lorentz attrator, and losed streamlinesour. So alled sweeps whih are trajetories represented as tubes are used. Thesesweeps allow to introdue a olor oding sheme. For instane, the olor an help toreognize that a trajetory still slowly moves towards a losed streamline that weaklyattrats.Wegenkittl et al. [WLG97℄ visualize higher dimensional dynamial systems. Todisplay trajetories parallel oordinates [ID90℄ are used. A trajetory is sampled atvarious points in time. Then these points are displayed in the parallel oordinate systemand a surfae is extruded to onnet these points. As an example, also a haoti attratorDepartment of Computer Siene, University of Kaiserslautern, Germany



Closed Streamlines in Flow Visualization 39derived from the Lorentz system is visualized. Hepting et al. [HDER95℄ study invarianttori in four dimensional dynamial systems by using suitable projetions into threedimensions to enable detailed visual analysis of the tori. This visualization an helpwhen limits of mathematial analysis are reahed to get more insight into the dynamialsystem.

Figure 3.3: Poinar�e setion with losed streamline (image ourtesy of Helwig Hauser,VRVis[LKG97℄).L�o�elmann [L�of98℄[LKG97℄ uses Poinar�e setions to visualize losed streamlinesand strange attrators. Poinar�e setions de�ne a disrete dynamial system of lowerdimension whih is easier to understand. The Poinar�e setion whih is transverse tothe losed streamline is visualized as a disk. On the disk, spot noise is used to depitthe vetor �eld projeted onto that disk. By this method, it an be learly reognizedwhether the ow, for instane, spirals around the losed streamline and is attratedor repelled or if it is a rotating saddle. Additionally, streamlines and streamsurfaesshow the vetor �eld in the viinity of the losed streamline that is not loated on thedisk visualizing the Poinar�e setion. Figure 3.3 shows an example of that visualizationmethod.3.4 Distributed ComputingDue to inreasing omputing power during the last years ow simulations beame largerand larger at �ner resolutions. Often, these simulations are omputed on a parallelmahine. Consequently, it takes a long time to ompute an appropriate visualization forDepartment of Computer Siene, University of Kaiserslautern, Germany



40 State of the Artsuh big datasets. Espeially, when dealing with an algorithm that needs to omputemany streamlines it helps a lot to ompute this in parallel also. Several parallel algo-rithms exist in visualization. In the following, we want to list a few of them that dealwith problems that are related to this work.Sujudi et al. [SH96℄ presented a method for omputing streamlines in a parallelenvironment by splitting the dataset into several sub-domains. If the streamline leavesa sub-domain another proess responsible for the atual domain has to ontinue theomputation. Reinhard et al. [RCJ99℄ proposed a parallel rendering method that dis-tributes tasks for eah ray whih has to be omputed to the di�erent proessors of theparallel mahine. A parallelization of line integral onvolution was presented by Z�okleret al. [ZSH96℄ where the vetor �eld is divided into several subdomains depending onthe number of proessors used.
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Closed Streamlines in Flow Visualization 41
Chapter 4Detetion and Visualization inPlanar FlowsThis hapter desribes an algorithm that detets if an arbitrary streamline  onvergesto a losed urve, also alled a limit yle. This means that  has  as �- or !-limit setdepending on the orientation of integration. We do not assume any knowledge on theexistene or loation of the losed urve, so that the algorithm an detet stable losedstreamlines. We exploit the fat that we use linear interpolation inside the ells forthe proof of our algorithm. But the priniple of the algorithm works on any pieewisede�ned planar vetor �eld where one an determine the topology inside the piees. First,we desribe how to explain and prove the presene of a losed streamline and �nally wegive a proedure how to �nd the exat position of the losed streamline.4.1 Detetion of Closed StreamlinesIn a preomputational step every singularity of the vetor �eld is determined. To �ndall stable losed streamlines we mainly ompute the topologial skeleton of the vetor�eld. We use an ordinary streamline integrator, like for instane an ODE solver usingRunge-Kutta. But we extended this streamline integrator so that it is able to detetlosed streamlines. In order to �nd all losed streamlines that reside inside anotherlosed streamline we have to ontinue integration after we found a losed streamlineinside that region.4.1.1 TheoryThe basi idea of our streamline integrator is to determine a region of the vetor �eldthat is never left by the streamline. Aording to the Poinar�e-Bendixson-Theorem, astreamline approahes a losed streamline if no singularity exists in that region.Department of Computer Siene, University of Kaiserslautern, Germany



42 Detetion and Visualization in Planar Flows

Figure 4.1: A streamline approahing a limit yle has to reenter ells.Notation 4.1.1 (Atually investigated streamline)We use the term atually investigated streamline to desribe the streamline thatwe hek if it runs into a limit yle.To redue omputational ost we �rst integrate the streamline using a Runge-Kutta-method of �fth order with an adaptive stepsize ontrol. Every ell that is rossed by thestreamline is stored during the omputation. If a streamline approahes a limit yle ithas to reenter the same ell again as shown in �gure 4.1. This results in a ell yle:De�nition 4.1.2 (Cell yle)Let s be a streamline in a given vetor �eld v. Further, let G be a set of ells representingan arbitrary retangular or triangular grid without any holes. Let C � G be a �nitesequene 0; : : : ; n of neighboring ells where eah ell is rossed by the streamline s inexatly that order and 0 = n. If s rosses every ell in C in this order again whileontinuing, C is alled a ell yle.This ell yle identi�es the region mentioned earlier. To hek if this region an beleft we ould integrate bakwards starting at every point on the boundary of the ellyle. If there is one point onverging to the atually investigated streamline we knowfor sure that the streamline will leave the ell yle. If not, the atually investigatedstreamline will never leave the ell yle. Sine there are in�nitely many points on theboundary this, of ourse, results in a non-terminating algorithm. To rak this problemwe have to redue the number of points we have to hek. Therefore we de�ne potentialexit points:De�nition 4.1.3 (Potential exit points)Let C be a ell yle in a given grid G as in De�nition 4.1.2. Then there are two kindsof potential exit points. First, every vertex of the ell yle C is a potential exitDepartment of Computer Siene, University of Kaiserslautern, Germany



Closed Streamlines in Flow Visualization 43point. Seond, every point on an edge at the boundary of C where the vetor �eld istangential to the edge is also a potential exit point. Here, only edges that are partof the boundary of the ell yle are onsidered. Additionally, only the potential exitpoints in the spiraling diretion of the streamline need to be taken into aount.To determine if the streamline leaves the ell yle we start a bakward integratedstreamline to see where we have to enter the ell yle in order to leave it at that exit.We will show later that it is suÆient to only hek these potential exit points if wewant to �gure out if the streamline an leave the ell yle.Notation 4.1.4 (Bakward integrated streamline)We use the term bakward integrated streamline for the streamline we integrateby inverting the vetors of the vetor �eld starting at a potential exit point in order tovalidate this exit point.
exit

Figure 4.2: If a real exit point an be reahed, the streamline will leave the ell yle.De�nition 4.1.5 (Real exit points)Let P be a potential exit point of a given ell yle C as in de�nition 4.1.3. If thebakward integrated streamline starting at P does not leave the ell yle after one fullturn through the ell yle, the potential exit point is alled a real exit point.Sine a streamline annot ross itself the bakward integration starting at a realexit point onverges to the atually investigated streamline. Consequently, the atuallyinvestigated streamline leaves the ell yle near that real exit point. Figure 4.2 showssuh a real exit point.If on the other hand no real exit point exists we an determine for every potentialexit point where we have a region with an inow that leaves at that potential exit.Consequently, the atually investigated streamline annot leave near that potential exitpoint.With these de�nitions we an formulate the main theorem for our algorithm:Department of Computer Siene, University of Kaiserslautern, Germany



44 Detetion and Visualization in Planar Flows
exit

exit

entry

Figure 4.3: If no real exit point an be reahed, the streamline will approah a limityle.Theorem 4.1.6Let C be a ell yle with no singularity inside and E the set of potential exit points.If there is no real exit point among the potential exit points E or there are no potentialexit points at all then there exists a losed streamline inside the ell yle.Proof: (Sketh)Let C be the ell yle. It is obvious that we annot leave the ell yle C if all bakwardintegrated streamlines started at every point on the boundary of C leave the ell yleC. Aording to the Poinar�e-Bendixson-theorem, there exists a losed streamline insidethe ell yle in that ase.We will show now that it is suÆient to treat only the potential exit points. If thebakward integrated streamlines starting at all these potential exit points leave the ellyle the bakward integration of any point on an edge will also do.Figure 4.4 shows the di�erent on�gurations of potential exits. Let E be an arbitrarypoint on an edge between two potential exit points. In part (a) both bakward integratedstreamlines starting at the verties V1 and V2 leave the ell yle. Consequently, E annotbe an exit. It would need to ross one of the other bakward integrated streamlines whihontradits with theorem 2.1.8.Part (b) of �gure 4.4 shows the ase where the vetor at a point on the edge istangential to the edge. Obviously, if E lies between V1 and T the bakward integratedstreamline will leave the ell yle immediately. If it lies between T and V2 and onvergesto the atually investigated streamline it has to ross the bakward integrated streamlinestarted at T . This ontradits with theorem 2.1.8. Beause of the linear interpolationat the edge, part () is also impossible.We have shown that the atually investigated streamline annot leave the ell yle.Consequently, there exists a losed streamline inside the ell yle C sine there is nosingularity inside C. ❏Department of Computer Siene, University of Kaiserslautern, Germany
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46 Detetion and Visualization in Planar FlowsRemark 4.1.7To get a possible on�guration the bakward integration starting at the vertex V1 mustalso onverge to the streamline beause it annot ross the bakward integration startingat point E as in part (d) of �gure 4.4. Part (e) explains why we also need to investigatethe tangential ase. If we start a bakward integrated streamline at point E it onvergestowards the atually investigated streamline. But if we only onsider the verties of theedge, both exit points may be no real exit points. Therefore we also have to start abakward integrated streamline at the point T , where the vetor �eld is tangential to theedge, to �gure out that we leave the ell yle at this edge. On the other hand, a bakwardintegrated streamline starting at any point between V1 and T immediately leaves the ellyle due to the linear interpolation.4.1.2 AlgorithmWith theorem 4.1.6 we are able to desribe our algorithm in detail. It mainly onsistsof the same three di�erent states:
➊ streamline integration: identifying one ell hange after the other, hek at eahell if we omplete a ell yle.
➋ heking for exits: going bakwards through the rossed ells and looking forpotential exit points.
➌ validating exit: integrating bakwards a urve from potential exit through thewhole ell yle.
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Figure 4.5: The UML state diagram of our algorithm.The algorithm swithes its states after the events shown in the state diagram in�gure 4.5. We use a standard integration method to ompute the streamline, �rst. InDepartment of Computer Siene, University of Kaiserslautern, Germany



Closed Streamlines in Flow Visualization 47this step we only hek for ell yles. This saves omputational time sine the hekingof all the exits is rather expensive. If we detet a ell yle we have to �nd all potentialexit points. After that we need to validate eah of the potential exit points to �gure outif there is a real exit point among them. If this is the ase we did not run into a losedstreamline yet. Therefore we ontinue with the standard integration. The algorithmexits if we ould not �nd a real exit point among all the potential exit points or if wereahed a ritial point or the boundary of the vetor �eld.Remark 4.1.8Theorem 4.1.6 guarantees that our algorithm detets losed streamlines if we hek everypotential exit point.

Figure 4.6: Exits of a ell yle.Figure 4.6 shows a real example of our algorithm. There we start a streamline nearthe soure in the enter of the �gure. This streamline spirals until we �nd the �rst ellyle. We stopped the integration there for this example. The �gure also shows all exitsand its bakward integrated streamlines. The streamline itself is olored blak. The gridis displayed in a lighter olor. In this example, every potential exit point is shown. Wean see that potential exit points whih are passed by a bakward integrated streamlinedo not neessarily need to be investigated beause if the bakward integrated streamlineleaves the ell yle the other one will also do. Figure 4.7 shows this in detail. Therethe bakward integrated streamline starting at Exit 2 also has to leave the ell ylebeause it annot ross the bakward integrated streamline starting at Exit 1. In theDepartment of Computer Siene, University of Kaiserslautern, Germany
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Figure 4.7: Exit of the ell yle whih does not need to be investigated.other ase, where the bakward integrated streamline started at Exit 1 stays inside theell yle, we have to ontinue the atually investigated streamline, anyway.Sine the streamline spirals from the inner region to the outside, we only have toonsider the potential exits in that diretion. In the example, every bakward integratedstreamline leaves the ell yle. Consequently, there is a limit yle in this ell ylewhih an be loalized as desribed in the next setion.4.2 Exat Loation of Closed StreamlinesSine we know a region that is never left by the streamline we an �nd the exat positionof the losed streamline using the Poinar�e map. This map is desribed in detail in thesubsetion 2.5.2.To �nd the exat position of the losed streamline we an use the edge where wedeteted the ell yle as a Poinar�e setion. Then we only have to �nd the �xed pointof the Poinar�e map. We use a binary searh to �nd this �xed point: we divide the edgewhere we deteted the ell yle into two parts. At the mid point we start a streamline tosee whih part of the edge is interseted by the streamline after one full turn. Sine thestreamline annot leave the ell yle, it is guaranteed that the streamline intersets onepart of the edge. Then, this part is subdivided again and we start another streamlineat the mid point. This proess ontinues until we are lose enough to the �xed point ofthe Poinar�e map. We use the length of the part of the edge as a stopping riterion.This �xed point gives us a point lying on the losed streamline. If we start anotherstreamline at that point this streamline will follow the losed streamline we are lookingfor. After one turn, i.e. after reahing the start point again, we know the exat loationof the losed streamline.Department of Computer Siene, University of Kaiserslautern, Germany



Closed Streamlines in Flow Visualization 494.3 Results

Figure 4.8: Simple vetor �eld with limit yle.The �rst example is a vetor �eld that ontains only one losed streamline. It issampled on a regular grid using a slightly hanged Van der Pol's equation. The de�ningequation for the vetor �eld V isV�xy� = �y � x3 + �x�x � : (4.1)

Figure 4.9: Simple vetor �eld with no limit yle.
Department of Computer Siene, University of Kaiserslautern, Germany



50 Detetion and Visualization in Planar FlowsAording to Hirsh and Smale[HS74℄ a limit yle ours if we set 0 < � � 1.An analysis of the �eld shows that we have a soure at (0; 0). When starting ouralgorithm near that singularity it integrates the streamline until it detets the limit yleas shown in �gure 4.8. Figure 4.8 also inludes the hedgehog of the vetor �eld, a glyphvisualization method where we use arrows representing the vetors at the orrespondingposition. The arrows are twie as long as the vetors of the �eld.In �gure 4.9, we investigate a vetor �eld whih spirals from the singularity to theouter regions. Again, we used equation 4.1 but we set � = �0:02 to ompute thevetor �eld. Consequently, there is no limit yle in the vetor �eld. Our algorithmorretly fails to detet one, when started near the singularity at (0; 0) and ontinuesthe streamline omputation until it reahes the boundary of the vetor �eld. Here, alsothe hedgehog of the vetor �eld is displayed saled by a fator of two.

Figure 4.10: Vortiity vetor �eld of a turbulent ow { hedgehog.Department of Computer Siene, University of Kaiserslautern, Germany
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Figure 4.11: Vortiity vetor �eld of a turbulent ow { limit yles.

Figure 4.12: Vortiity vetor �eld visualized by the topologial skeleton inluding losedstreamlines. Department of Computer Siene, University of Kaiserslautern, Germany



52 Detetion and Visualization in Planar FlowsThe third example is a simulation of a swirling jet with an inow into a steadymedium. The simulation originally resulted in a three dimensional vetor �eld but weused a utting plane and projeted the vetors onto this plane to get a two dimensional�eld. This dataset was provided by Prof. Kollmann from the mehanial engineeringdepartment at the University of California at Davis. In this appliation one is interestedin investigating the turbulene of the vetor �eld and in regions where the uid staysvery long. This is neessary beause some hemial reations need a speial amount oftime. These regions an be loated by �nding losed streamlines. Figure 4.10 shows thehedgehog of that vetor �eld saled by a fator of two. In �gure 4.11 one an see some ofthe losed streamlines deteted by our algorithm. All these limit yles are loated in theupper region of the vetor �eld. Additionally �gure 4.11 inludes the hedgehog wherethe arrows representing the vetors are four times longer than the orresponding vetor.Figure 4.12 shows all losed streamlines of this vetor �eld inluding the topologialskeleton.To ompare our enhanements with usual streamline omputation methods, we im-plemented an algorithm whih omputes the topologial skeleton as desribed in [HH91℄.Therefore we have to determine the singularities. Then we start a streamline at eahsaddle point displaed a little bit in positive and negative eigendiretion of both eigen-vetors. Remind that our algorithm does not need any exit onditions other than thedetetion of losed streamlines or reahing a singularity or the border of the data!To get an idea of the omputational ost of our method we also implemented asimple ODE solver to ompute the streamlines. The vetor �eld shown in �gure 4.10ontains 337 singularities. The algorithm using a simple ODE solver needed 738 seondsto ompute the topologial skeleton on a Pentium II 350 MHz. Using our streamlineintegration method, whih uses the same ODE solver but heks for limit yles, weonly needed 604 seonds on the same system whih is 18 perent faster! The reason forthat is that we do not need to wait until the ODE solver reahes a ertain number ofsteps if we run into a limit yle. This saves some time whih we an use to hek forlimit yles.4.4 LimitationsIf more than one losed streamline rosses the same ell, the algorithm may fail to detetthese losed streamlines. For instane, there is a strutural unstable on�guration withone losed streamline inside the other. One losed streamline ats like a soure, letssay the inner one, while the other one behaves like a sink so that the ow starts at the�rst and is attrated by the seond one. Sine there is an outow out of the ell thealgorithm annot distinguish between a regular outow and this on�guration.Figure 4.13 shows an example for suh a on�guration. The ow diretion inside the�rst losed streamline is the same than behind the seond one. It looks the same as ifDepartment of Computer Siene, University of Kaiserslautern, Germany
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Figure 4.13: Unstable losed streamlines.there are no losed streamlines at all. Consequently, the algorithm fails to detet bothlosed streamlines.

Department of Computer Siene, University of Kaiserslautern, Germany
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Chapter 5Parallel Detetion of ClosedStreamlinesTo determine the losed streamlines of a vetor �eld many streamlines have to be om-puted. In fat, we ompute the topologial skeleton. This graph leads us to the losedstreamlines. Sine the number of streamlines may be large depending on the given ve-tor �eld, this may take several minutes or even hours, espeially sine we also have toompute even more bakward integrated streamlines. Therefore we reated a parallelversion of this algorithm to derease omputational time by distributing the streamlineomputation to several lients. Some more information on onurrent programming anbe found in the literature [Sh97℄[Mul93℄ [Ung97℄[Aga89℄.First, we desribe some parallel mahines that an be used for our algorithm. Thentwo di�erent parallelization methodologies are disussed in the next setion. In the endof this hapter we show the results inluding di�erent timings on several test systems.5.1 Parallel MahinesIn this setion we desribe briey some parallel mahines, the Cray/SGI T3E, the IBMRS/6000 SP, and Linux lusters. The �rst one uses a distributed shared memory oneptwhile the other two ones do not share their memory at all.5.1.1 Cray/SGI T3EThe Cray/SGI T3E is available sine 1996. It is a distributed shared memory systemwhere every node shares its memory with all the others. It uses a virtual address spaeto aess the memory that is spread among all nodes. The proessor used for the nodes isthe DEC Alpha proessor 21164. This proessor onsists of two integer and two oatingpoint units with IEEE 64 bit arithmeti. It has an eight KB �rst level and 96 KB seondDepartment of Computer Siene, University of Kaiserslautern, Germany



56 Parallel Detetion of Closed Streamlineslevel ahe diretly on the hip.The GigaRing tehnology based on the IEEE SCI standard is used to onnet thenodes. Every node is bi-diretional onneted to its neighbor in a three dimensionalnetwork topology.5.1.2 IBM RS/6000 SPThe IBM RS/6000 SP uses POWER4 miroproessors. This type of proessor has anSMP-on-a-hip design. It onsists of two 1.3 GHz proessors inluding seond levelahe diretly on one hip. Every node has its own memory. So the parallel programhas to use a message passing system as for instane PVM or MPI.
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Figure 5.1: HPS basi element of an IBM RS/6000 SP for 16 nodes.Up to sixteen nodes are grouped together in a network on�guration as shown in�gure 5.1 using high performane swithes (HPS). If more than sixteen nodes are usedseveral of these groups have to be interonneted.5.1.3 Linux ClustersWith Linux lusters there are no restritions onerning network topology, memory, orCPU speed. Almost every standard PC omponent an be used in a Linux luster.Even several desktop Linux omputers that are onneted through an Ethernet an beDepartment of Computer Siene, University of Kaiserslautern, Germany



Closed Streamlines in Flow Visualization 57alled a Linux luster. But usually the network is the bottlenek in suh a system.Therefore faster network devies like for instane a GigaBit network devie or Myrinethost interfae is used. A at, tree shaped network topology is possible for a Linuxluster. But espeially with a greater number of nodes a network with routes from anyto any other node is desirable to avoid ollisions and failitate faster transfers.Beause of their low pries and the great salability Linux lusters beome more andmore popular. They also appear nowadays in the list of the top 500 SuperomputerSites.5.1.4 Comparison Cray/SGI T3E IBM RS/6000 SP Linux ClusterProessor type DEC Alpha 21164 p690 server (dual) e.g. AthlonNumber of proessors up to 2176 up to 16 unlimitedMemory size (per node) 512 MB { up to 3 GBClok speed (per node) up to 675 MHz up to 1.3 GHz up to 2GHzNetwork bandwidth 500 MB/s 500 MB/s up to 250 MB/sPeak Performane 3 TFLOPS 2.6 TFLOPS unlimitedFigure 5.2: Tehnial spei�ations of di�erent parallel mahines.The main advantage of Linux lusters is the low prie of standard PC omponents. Itis very extendable beause there is no limit in the number of nodes used in the luster. Inpriniple, you only have to add a new omputer to the network to inrease omputationalpower. The proessors are faster than the ones used for both other parallel mahines.The advantage of both, the Cray/SGI T3E and the IBM RS/6000 SP, is the fasternetwork. Both ommerial systems are limited with respet to extendability. Figure 5.2shows some tehnial spei�ations of the three di�erent parallel mahines. Altogether,a Linux luster is the best way to get a great performane at a low prie.5.2 Parallel AlgorithmTo ompute the losed streamlines there are two di�erent tasks. First, we have toompute the ritial points in the given vetor �eld. The seond task is to ompute thelosed streamlines by determining the topologial skeleton. The next two subsetionsdesribe these tasks in detail.Department of Computer Siene, University of Kaiserslautern, Germany



58 Parallel Detetion of Closed Streamlines5.2.1 Parallel Computing of Critial PointsTo parallelize this algorithm we have to ompute all the ritial points that are presentin the vetor �eld, �rst. Sine we only need the data of the ells, i.e. the position ofthe verties and the vetors at these verties, to determine if there exists a ritial pointinside the ell and where it is loated, we an transfer these tasks to the various lientsof the luster. When the lients reeive the index of a ell they ompute the ritialpoint and return the position and its type, if they have found one, to the server. Alltasks are ontrolled by a sheduler whih is a part of the server.
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Figure 5.3: Sheduling of the tasks.The sheduling of the tasks works as follows: the server reates one task for eahell ontaining the index of this ell and queues it in the sheduler. The sheduler itselfheks if there are still tasks left and if there is any lient that has �nished its task yet.If there is more than one lient without an ative job, the fastest is hosen. Then thenext task is sent to this lient. The lient reeives this task, omputes the ritial pointand sends it, if it has found one, bak to the server and tells the sheduler that it has�nished its job. Sine the amount of data to ontrol the lients and transfer the ritialpoints bak to the server is very low, we an fully bene�t from the performane of eahlient.5.2.2 Determining Closed Streamlines in ParallelAording to the motivation there exist two di�erent approahes for parallelization. Weexperimented with both approahes to �nd the best one. There are disussed in detailin the following.Department of Computer Siene, University of Kaiserslautern, Germany
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Cache Cache Cache CacheFigure 5.4: Con�guration of the parallel program.5.2.2.1 Subdivision ApproahIn our �rst approah every lient got its data from the server. Computing streamlines isa global task sine it is not known whih region of the vetor �eld this streamline mayross. Therefore it is not possible to simply subdivide the whole dataset into severalregions. If we want to subdivide into several regions we have to restart the streamlinein another task if it leaves suh a region. This usually results in a poor load balaningsine it is likely that there are regions that are rossed by only few streamlines. It ispossible to swith regions in a partiular task. But again, we do not know if a streamlinerossed exatly that region we just exhanged.Therefore we tried a di�erent approah where eah request to the dataset on one ofthe lients results in questioning the server using PVM[GBD+94℄. Figure 5.4 shows theon�guration. We use ahes to avoid asking the server for the same data repeatedly. Butdue to the slow network onnetion and the long start-up time for ommuniating underPVM the transfer of the data took more time than the omputation of the streamlineeven when we used a GigaBit-onnetion. As a result the parallel version using suh asubdivision approah uses more time than the sequential version.5.2.2.2 Task Driven ApproahAfter we have omputed all ritial points, we start streamlines at eah saddle point inpositive and negative eigendiretion with respet to the matrix of the linear interpolantand hek for losed streamlines while omputing the streamlines as previously desribed.Computing streamlines is not a loal task sine the streamlines may ross any regionof the ow. Therefore we do not subdivide the data into several bloks like in somerendering tasks [IAO94℄. Our implementation uses an approah where we reate severaltasks eah of them representing the whole omputation of one streamline starting at agiven position. Then we use the sheduler to distribute the tasks to the various lientsof our luster.Sine the data of the vetor �eld inluding otree and the program �t into 64 MBDepartment of Computer Siene, University of Kaiserslautern, Germany
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Server
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Dataset Dataset DatasetDatasetFigure 5.5: Con�guration of the parallel program.of RAM we deided to use a on�guration where every lient loads the whole datasetinto its own memory. This failitates the fastest possible aess to the data. Sine theserver and every lient load the data at the same time there is no time lost beauseotherwise the lients would simply wait for the server until it has loaded the dataset.When dealing with larger datasets we have to use an out of ore method whih will bedone in the future.Sine we want to spread tasks that represent the whole omputation of one stream-line, eah task ontains two items: a point where the streamline has to start and theintegration diretion. The other data that is needed for the omputation is alreadypresent at eah lient beause the lient has loaded the whole dataset yet. Due to theminimal amount of data of eah task the ommuniation ost whih is produed bymigrating tasks is very low.To distribute the tasks to the various lients we use the previously desribed shed-uler: the server determines the start positions of the streamline using eah saddle pointfound in the vetor �eld. Then a task ontaining this start position and the integrationdiretion is reated and spooled into the queue of the sheduler, while the shedulersends the next job to the fastest lient that has no ative job. The lient reeives thistask, searhes for losed streamlines and sends it, if it has found one, bak to the server.Again, the amount of data to ontrol the lients and transfer the losed streamlinesbak to the server is very low, so that we an fully bene�t from the performane of eahlient.5.3 ResultsOur algorithm is implemented in C++, while the server ommuniates with the lientsusing PVM[GBD+94℄. The di�erent tasks are enapsulated in C++-lasses. This fa-ilitates that the tasks an transfer themselves to the lient on demand and the lientsonly need to all a method to exeute the reeived task.To test the performane of our implementation we mainly use two di�erent systems.Department of Computer Siene, University of Kaiserslautern, Germany



Closed Streamlines in Flow Visualization 61One is a Linux luster onsisting of seven lients. Eah node is equipped with anAMD Duron 600 or AMD Duron 700 proessor and 64 MB of RAM. The server is amultiproessor omputer with two Pentium III 500 proessors. The seond system isbased on some of our desktop omputers with a Pentium II 350. We use Linux andnormal PC omponents sine this is a heap way to get a great performane omparedto other parallel omputers. In order to get a more heterogeneous on�guration we mixboth systems by using all Linux omputers available in our group for a last performanetest.As a test dataset we use the same simulated dataset as in the previous hapter. Thevetor �eld has 362 ritial points and for the topology inluding losed streamlinesabout six hundred streamlines have to be omputed.Proessor Floating-point indexPentium II 350 2.404Pentium III 500 3.561AMD Athlon 650 5.163AMD Duron 600 4.768AMD Duron 700 5.547Intel Celeron 800 6.125AMD Thunderbird 1400 11.227Figure 5.6: Floating-point indies of the di�erent proessors.To determine the optimal timing of our algorithm we used the benhmark utilitynbenh1 in order to get a suitable ratio between the speeds of the proessors. Nbenh isa port to Linux/Unix of release 2 of BYTEMagazine's BYTEmark benhmark program2.We omputed the oating-point index of eah proessor whih gives the relative speedof the oating-point unit ompared to an AMD K6-233 proessor. The results an befound in �gure 5.6. Using these values we omputed the oating-point index of the wholeparallel mahine by summing up the indies orresponding to the involved proessorsand alulated the optimal runtime by negleting the ommuniation ost between serverand lients.Figures 5.7 and 5.8 show the timings on the desktop omputers. The luster onsistsof up to �ve mahines. The optimal timings are displayed using a dashed line while thereal timings are shown by a solid line. This on�guration is very suitable for testing thesalability of our implementation beause every omputer has idential performane.Obviously, the omputation time is halved if the number of proessors is doubled whihindiates a good salability of our implementation.1http://www.tux.org/~mayer/linux/bmark.html2http://www.byte.om/bmark/bmark.htmDepartment of Computer Siene, University of Kaiserslautern, Germany



62 Parallel Detetion of Closed Streamlines

2 51 3 4
processors

time

100

600

300

400

500

200

Figure 5.7: Time needed to ompute losed streamlines using Pentium PII-350 proes-sors displayed as graph. # CPUs Time Optimum1 612s |2 306s 306s3 205s 204s4 158s 153s5 134s 122sFigure 5.8: Time needed to ompute losed streamlines using Pentium PII-350 proes-sors shown in a table.The timings of the algorithm running on our Linux luster with up to seven lientsis displayed in �gures 5.9 and 5.10. Again, the optimal timings are displayed using adashed line while the real timings are shown by a solid line. Sine the server has twoproessors there are always running at least two tasks at the same time on this mahine.Adding more lients to the Linux luster the time needed for the algorithm is reduedorrespondingly to the speed of its proessor. Again, we an see that we nearly bene�tfrom the full performane of eah lient due to the minimal ommuniation betweenserver and lient as an be seen from the di�erene between the optimal and the realtimings.In our next test we also used the Linux desktop mahines in all the oÆes of ourvisualization group. This resulted in a parallel mahine onsisting of six Pentium II-350, two AMD Athlon 650, one dual proessor mahine with two Pentium III-500, fourAMD Duron 600, and three AMD Duron 700. Altogether, the algorithm used seventeenDepartment of Computer Siene, University of Kaiserslautern, Germany
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3018 19 20 21 22 23 24 25 26 27 28 29Figure 5.9: Time needed to ompute losed streamlines using a Linux luster with AMDDuron 600 and AMD Duron 700 proessors displayed as graph.# CPUs Time Optimum2 224s |3 138s 134s4 99s 96s5 77s 74s6 63s 61s7 53s 50s8 46s 43s9 39s 37s17 28s 24s30 17s 9sFigure 5.10: Time needed to ompute losed streamlines using a Linux luster withAMD Duron 600 and AMD Duron 700 proessors shown in a table.proessors and it took 28 seonds to ompute all losed streamlines that are present inour test dataset. As expeted, this is faster than using the luster alone orresponding tothe speed of the proessors and slightly slower than the optimal runtime of 24 seonds.This also tests our implementation in a more heterogeneous parallel mahine due to thedi�erent speeds of the proessors. It shows that we an derease the time needed forthe omputation by adding more proessors no matter what sort of mahine it is.Then we also added the Linux mahines in our student rooms for a last test. Theseare �ve mahines equipped with an Intel Celeron 800, two mahines with a PentiumIII-500, and six with an AMD Thunderbird 1400 proessor. So we end up with 30Department of Computer Siene, University of Kaiserslautern, Germany



64 Parallel Detetion of Closed Streamlinesproessors. Our algorithm needed 17 seonds. Compared to the optimal timing of 9seonds this is a little bit too slow. This is due to the slow network onnetion. Beauseall omputers reside in di�erent areas of our working group and several other proessessuh as network �le system also use this network we do not have the full bandwidthavailable. Consequently, the ommuniation ost is not negletable anymore so that thereal and the optimal timings di�er.
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Chapter 6Closed Streamlines inTime-Dependent FlowsWhen dealing with losed streamlines one question ours: how does a losed streamlineemerge? Inspired by the books of Abraham and Shaw[AS82℄ [AS83℄ [AS84℄ [AS88℄ wevisualize the evolution of a losed streamline in a planar unsteady ow. We use the thirddimension to represent the time. The evolution of a losed streamline an be shown asa tube shaped visulization for the losed streamlines in the various timesteps.The singularities are used as a starting point for our investigations. Therefore webriey desribe the traking of the singularities in the next setion. This work was doneby Triohe et al. [TSH01℄. Then we show how to �nd and follow a losed streamlineover time. In the end we explain the results of our algorithm and explain the limitationsof our method.
6.1 Traking Critial PointsWhen dealing with time-dependent two-dimensional ows we an use the third dimen-sion to represent time as desribed in subsetion 2.2.4. For traking the losed stream-lines we �rst determine the behavior of the ritial points. For a given ell, the assoiatedinterpolant ontains, for eah value of time t, a single ritial point. This is due to theaÆne linear nature inside the triangles of its restrition to any time plane. Letting thetime parameter t move from ti to ti+1, the ritial point position desribes a 3D urve.A detailed desription of how to �nd the paths of the ritial points an be found in theartile of Triohe et al. [TSH01℄.Department of Computer Siene, University of Kaiserslautern, Germany
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Figure 6.1: Closed streamlines found by the algorithm.6.2 Following Closed StreamlinesAfter traking the singularities, we analyze the vetor �eld in disrete timesteps. Theremust be a ritial point inside eah losed streamline. Therefore, we use the ritial pointpath ontaining a Hopf bifuration as a starting point for our streamline algorithm fromsetion 4.1 whih detets the losed streamline if it exists. We follow the ritial pointpath in disrete steps in positive and negative diretions starting at the bifuration.After we have found the ell yle ontaining the losed streamline we �nd the exatposition using the Poinar�e-map from setion 4.2. As a last test we have to hek ifthe losed streamline really surrounds the ritial point. This is neessary beause thestreamline may have ran into another losed streamline in a totally di�erent region of theow. Obviously, losed streamlines surrounding the ritial point our only in one ofthe two temporal diretions. We ontinue by stepping forward in the temporal diretionuntil the losed streamlines reah either another bifuration whih breaks them up orthe border of the grid.Figure 6.1 shows the result of this step. Here we have found the losed streamlinesat various timesteps. The losed streamlines are approximated by several line segments.The paths of the ritial points are also shown using the same olors as in the originalpaper [TSH01℄. The Hopf bifuration, where we started to detet the losed stream-lines, is marked with a yellow sphere. The di�erent bifuration types are desribed insetion 2.8. In this example the life yle of the losed streamline is started by a HopfDepartment of Computer Siene, University of Kaiserslautern, Germany
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Figure 6.2: Closed streamlines visualized as a tube over time.bifuration and terminated by a Periodi Blue Sky in 2D bifuration.To visualize the evolution of losed streamlines, we onstrut tubes from the variouslosed streamlines similar to the pitures by Abraham and Shaw [AS88℄. We onstrutsurfaes onsisting of triangles whih onnet the approximating line segments of thelosed streamlines. The bifuration point is onneted to the tube using a parabolisurfae approximated with triangles. The result is shown in �gure 6.2.6.3 ResultsTo test our method, we have reated a syntheti vetor �eld ontaining four ritialpoints. The position of the ritial points is a funtion of time, desribing losed urvesin the plane. We have sampled this vetor �eld on a triangular point set for severalvalues of the time parameter. The rotation of the ritial points (eah with a spei�frequeny) entails many strutural hanges for the topology. This is very interesting forour purpose sine all di�erent types of bifurations whih reate losed streamlines arepresent.Figure 6.3 shows the result of our algorithm, where the losed streamlines are shownas red tubes. The upper one and the one on the right are started and terminated by HopfDepartment of Computer Siene, University of Kaiserslautern, Germany
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Figure 6.3: Closed streamlines found in a syntheti test dataset.

Figure 6.4: Detailed view of a Hopf bifuration.bifurations { shown as a yellow sphere { while the lower losed streamline starts at aHopf bifuration and is terminated by a Periodi Blue Sky in 2D bifuration. Sine thereis a ritial point inside the ell yle, i.e. the saddle, the ow behaves totally di�erentdepending on where a streamline passes the saddle. Therefore the exat loalizationfails when we are too lose to the ritial point.Figures 6.4 and 6.5 show some detailed views of the di�erent bifurations. Also someDepartment of Computer Siene, University of Kaiserslautern, Germany
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Figure 6.5: Detailed view of a Periodi Blue Sky in 2D bifuration.
streamlines are drawn to show how these streamlines irle around the limit yle butnever ross it. Figure 6.4 is a losed streamline started by a Hopf bifuration. Thebifuration is loated in the lower left orner. In �gure 6.5 the losed streamline isstarted by a Hopf bifuration loated in the upper left orner. It grows in size until it isterminated by a Periodi Blue Sky in 2D bifuration. Consequently, the tube visualizingthe evolution of the losed streamline does not get losed.Another dataset we used is a simulation of a swirling jet with an inow into a steadymedium. The simulation uses a ylindrial domain and assumes rotational symmetry, sothat we are left with a two-dimensional vetor �eld on a plane through the enter axis ofthe ylinder. In this appliation one is interested in investigating the turbulene of thevetor �eld and in regions where the uid stays very long. Swirling jets play a signi�antrole in many ombustion proesses. It is important to �nd suh reirulation regionsindiated by losed instantaneous streamlines. To avoid visual lutter we use only apart of the dataset for our visualization. Figure 6.6 shows the result of our algorithm.The ritial point paths are also shown where saddles are olored red, sinks are green,and soures are visualized using blue olor. Obviously, in regions where only one saddlepoint is involved, we annot �nd any losed streamline due to the types of bifurationsexplained in setion 2.8. Most of the losed streamlines emerge at Hopf bifurationswhih are marked with a yellow sphere. Therefore, losed streamlines are found wheresoures and sinks alternate while time propagates, so that we are able to identify theregions where the uid stays very long.Department of Computer Siene, University of Kaiserslautern, Germany
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Figure 6.6: Closed streamlines found in a vortiity dataset.6.4 LimitationsDue to the unstable on�guration of the homolini onnetions of the periodi bluesky in 2D bifuration we atually fail to reah the bifuration exatly. Our implementa-tion terminates the tube representing the losed streamline slightly too early. Anothermissing feature in this implementation is to �nd several losed streamlines around oneritial point. This an be aomplished by ontinuing the integration proess. Thetime slie has to be heked for losed streamlines again near the last limit yle thatwas found.
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Chapter 7Closed Streamlines in 3D VetorFields
Closed streamlines an be found in three dimensional vetor �elds also. For instane,the Terrestrial Planet Finder Mission of NASA deals with stable manifolds where 3Dperiodi halo orbits play an important role. These orbits are nothing else than losedstreamlines in a three dimensional vetor �eld. Figure 7.1 shows an example.

Figure 7.1: Terrestrial Planet Finder Mission (image ourtesy of Ken Museth,Calteh[MBL01℄).
The next setion desribes how to detet losed streamlines in three dimensionalvetor �elds. It shows the di�erenes between the two dimensional ase both in theoryand the algorithm itself. In the end we present the results of the algorithm.Department of Computer Siene, University of Kaiserslautern, Germany
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Figure 7.2: Bakward integrated surfae.7.1 Deteting Closed Streamlines in 3D VetorFieldsAlthough the priniple to detet losed streamlines in a three dimensional vetor �eldis similar to the two dimensional ase there are some di�erenes. We will desribe thetheoretial and algorithmi di�erenes and similarities in the next two subsetions.7.1.1 TheoryThe data is given on a tetrahedral grid. But the priniple should work on other elltypes as well. The detetion of a ell yle works the same as in de�nition 4.1.2. Ofourse, the ells are three dimensional in this ase. To hek if we an leave the ellyle we have to onsider every bakward integrated streamline starting at an arbitrarypoint on a fae of the boundary of the ell yle. Looking at the edges of a fae we ansee diretly that it is not suÆient to just integrate streamlines bakwards. Figure 7.2shows an example. We integrated a streamsurfae bakwards starting at an edge ofthe ell yle. The streamlines starting at the verties of that edge leave the ell yleearlier than the omplete surfae. So it may be possible that a part of the streamsurfaestays inside the ell yle although the bakward integrated streamlines starting at theverties leave it. Consequently, we have to �nd another de�nition for exits.Department of Computer Siene, University of Kaiserslautern, Germany



Closed Streamlines in Flow Visualization 73De�nition 7.1.1 (Potential Exit Edges)Let C be a ell yle in a given tetrahedral grid G as in De�nition 4.1.2. Then we allevery edge at the boundary of the ell yle a potential exit edge. Analogue to the twodimensional ase we de�ne a line on a boundary fae where the vetor �eld is tangentialto the fae as a potential exit edge also.Due to the fat that we use linear interpolation inside the tetrahedrons we an showthat there will be at least a straight line on the fae where the vetor �eld is tangentialto the fae or the whole fae is tangential to the vetor �eld.Theorem 7.1.2Let F be a triangular fae of a tetrahedral. The vetors v1, v2, and v3 are the vetorvalues and p1, p2, and p3 the positions of the verties of the fae F . The vetors insidethe tetrahedron are interpolated linearly. Then all vetors that are tangential to the faeare on a straight line or all vetors inside the fae are tangential.Proof:Let v1, v2, v3, p1, p2, and p3 the vetors of respetively positions at the verties of thefae F . Let n be an orthogonal vetor to the fae F . We an interpolate a vetor insidethe fae F by using the baryentri oordinates:v = � � v1 + � � v2 +  � v3Every vetor that is tangential to the fae F is orthogonal to the vetor n. Therefore:n � v = �n � v1 + �n � v2 + n � v3A property of the baryentri oordinates is that they sum up to 1:� + � +  = 1So we have two equations and three variables. This leads to an at least one dimensionalsolution of linear equations if there is any solution. ❏Remark 7.1.3Beause of theorem 7.1.2 we do not need to onsider any isolated point on a fae wherethe vetor �eld is tangential to the fae beause this annot our.When dealing with edges as exits we have to ompute a streamsurfae instead ofstreamlines to onsider every point on an exit edge. This leads us to the followingnotation.Notation 7.1.4 (Bakward integrated streamsurfae)We use the term bakward integrated streamsurfae to desribe the streamsurfaewe integrate by inverting the vetors of the vetor �eld starting at a potential exit edgein order to validate this exit edge.Department of Computer Siene, University of Kaiserslautern, Germany



74 Closed Streamlines in 3D Vetor FieldsAnalogue to de�nition 4.1.5 we de�ne real exit edges.De�nition 7.1.5 (Real exit edge)Let E be a potential exit edge of a given ell yle C as in de�nition 7.1.1. If thebakward integrated streamsurfae does not ompletely leave the ell yle after one fullturn through C then this edge is alled a real exit edge.For the bakward integrated streamsurfae we use a simpli�ed version of the stream-surfae algorithm introdued by Hultquist [Hul92℄. Sine we do not need a triangulationof the surfae we only have to proess the integration step of that algorithm. Initially,we start the bakward integration at the verties of the edge. If the distane betweenthese two bakward integrations is greater than a speial error limit we start a newbakward integration in between. This ontinues with the two neighboring integrationproesses until we have reated an approximation of the streamsurfae that respets thegiven error limit.

Figure 7.3: Bakward integration in one ell.The integration stops if the whole streamsurfae leaves the ell yle or if we haveompleted one full turn through the ell yle. But to onstrut the surfae properlywe may have to ontinue a bakward integration proess aross the boundary of the ellyle. This is due to the fat that some part of the streamsurfae is still inside the ellbut the bakward integrated streamline has already left it. Figure 7.3 shows a simpli�edexample. Both streamlines at the left and right edge of the surfae leave the ell, in fatthey leave right after they started. But the integration proess must be ontinued untilthe whole surfae, reated inside the ell by these two streamlines, leaves the ell.Department of Computer Siene, University of Kaiserslautern, Germany



Closed Streamlines in Flow Visualization 75With these de�nitions and motivations we an formulate the main theorem for ouralgorithm:Theorem 7.1.6Let C be a ell yle as in de�nition 4.1.2 with no singularity inside and E the set ofpotential exit edges. If there is no real exit edge among the potential exit edges E orthere are no potential exit edges at all then there exists a losed streamline inside theell yle.Proof: (Sketh)Let C be a ell yle with no real exit edges. Every bakward integrated streamsurfaeleaves the ell yle C ompletely. As in the 2D ase it is obvious that we annot leavethe ell yle if every bakward integration starting at an arbitrary point on a fae ofthe boundary of the ell yle C leaves the ell yle. So we have to prove that theatually integrated streamline annot leave the ell yle C.We look at eah fae of the boundary of the ell yle C. Let Q be an arbitrarypoint on a fae F of the boundary of the ell yle C. Let us assume that the bakwardintegrated streamline starting at Q onverges to the atually investigated streamline.We have to show that this is a ontradition.First ase: The edges of fae F are exit edges and there is no point on F where thevetor �eld is tangential to F .From a topologial point of view the streamsurfaes starting at all edgesof F build a tube and leave the ell yle. Sine the bakward integratedstreamline starting atQ onverges to the atually investigated streamlineit does not leave the ell yle. Consequently, it has to ross the tubebuilt by the streamsurfaes. This ontradits theorem 2.1.8 beausestreamlines annot ross eah other and therefore a streamline annotross a streamsurfae.Seond ase: There is a potential exit edge e on the fae F that is not a part of theboundary of F .Obviously, the potential exit edge e divides the fae F into two parts. Inone part there is outow out of the ell yle C while at the other partthere is inow into C. We do not need to onsider the part with outowany further beause every bakward integrated streamline starting at apoint of that part immediately leaves the ell yle C.The bakward integrated surfae starting at the potential exit edge e andparts of the bakward integrated streamsurfaes starting at the boundaryedges of the fae F build a tube again from a topologial point of view.Consequently, the bakward integrated streamline starting at Q has toleave the ell yle C.Department of Computer Siene, University of Kaiserslautern, Germany



76 Closed Streamlines in 3D Vetor FieldsWe have shown that the bakward integrated streamline starting at the point Q hasto leave the ell yle also. Sine there is no bakward integrated streamline onvergingto the atually investigated streamline at all, the streamline will never leave the ellyle. ❏7.1.2 AlgorithmWith theorem 7.1.6 we are able to desribe our algorithm in detail. It is quite similarto the two dimensional ase and mainly onsists of three di�erent states:
➊ streamline integration: identifying one ell hange after the other, hek at eahell if we reahed a ell yle.
➋ heking for exits: going bakwards through the rossed ells and looking forpotential exit edges.
➌ validating exit: integrating bakwards a streamsurfae from potential exit edgesthrough the whole ell yle.

Figure 7.4: Closed streamline inluding ell yle and bakward integrations.Department of Computer Siene, University of Kaiserslautern, Germany



Closed Streamlines in Flow Visualization 77Figure 7.4 shows an example of our bakward integration step. There, also the losedstreamline and the ell yle is shown. Every bakward integrated streamsurfae leavesthe ell yle. Aording to theorem 7.1.6, there exists a losed streamline inside thisell yle. Then we an �nd the exat loation by ontinuing the integration proess ofthe streamline that we atually investigate until the di�erene between two suessiveturns is small enough. This numerial riterion is suÆient in this ase sine we haveshown that the streamline will never leave the ell yle.7.2 Results

Figure 7.5: Symmetri two dimensional vetor �eld.To test our implementation we reated a syntheti dataset whih inludes one losedstreamline. We �rst produed a two dimensional vetor �eld. Figure 7.5 shows thisvetor �eld. To get an idea of the struture a hedgehog visualization is inluded. Thevetor �eld ontains a saddle singularity in the enter and two symmetrial sinks. Thetopologial skeleton is shown also. To get a three dimensional ow we rotated the twodimensional vetor �eld around the y-axis. Due to the symmetrial arrangement of thesinks this vetor �eld inludes exatly one losed streamline. Figure 7.6 shows the resultof our algorithm. To visualize a little bit of the surrounding ow several streamlines areDepartment of Computer Siene, University of Kaiserslautern, Germany
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Figure 7.6: Closed streamline in a three dimensional vetor �eld.drawn. Obviously, every streamline is attrated by the losed streamline. After a shortwhile the streamline spirals around the losed streamline until it ompletely merges intoit. We an see in this example that the losed streamline in this three dimensional owats like a sink.Figure 7.7 shows the same losed streamline with two streamsurfaes. The stream-surfaes are { just like the streamlines { attrated by the losed streamline. The stream-surfae gets smaller and smaller while it spirals around the losed streamline. After afew turns around the losed streamline it is only slightly wider then a streamline and�nally it totally merges with the losed streamline. We used a rather arbitrary olorDepartment of Computer Siene, University of Kaiserslautern, Germany
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Figure 7.7: Limit yle in a 3D vetor �eld with streamsurfaes.sheme for the surfae to enhane the three dimensional impression. Both �gures 7.6and 7.7 indiate the potential of this algorithm.
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