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One thing I have learned in a long life: that all our science,
measured against reality, is primitive and childlike and yet it
is the most precious thing we have.

Albert Einstein (1879 1955)
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Abstract

Vector fields occur in many of the problems in science and engineering. In combustion
processes, for instance, vector fields describe the flow of the gas. This process can be
enhanced using vector field visualization techniques. Also, wind tunnel experiments can
be analyzed. An example is the design of an air wing. The wing can be optimized to
create a smoother flow around it. Vector field visualization methods help the engineer
to detect critical features of the flow. Consequently, feature detection methods gained
great importance during the last years.

Topological methods are often used to visualize vector fields because they clearly
depict the structure of the vector field. In previous publications about topological
methods closed streamlines are neglected. Since closed streamlines can behave in exactly
the same way as sources and sinks they are an important feature that cannot be ignored
anymore.

To accomplish this, this work concentrates on detecting this topological feature. We
introduce a new algorithm that finds closed streamlines in vector fields that are given
on a grid where the vectors are interpolated linearly. We identify regions that cannot
be left by a streamline. According to the Poincaré-Bendixson theorem there is a closed
streamline in such a region if it does not contain any critical point. Then we identify
the exact location using the Poincaré map. In contrast to other algorithms, this method
does not presume the existence of a closed streamline. Consequently, this algorithm is
able to really detect closed streamlines inside the vector field. A parallel version of this
algorithm is also described to reduce computational time. The implementation scales
reciprocally proportional to the CPU speed of the used computers.

In order to get a better understanding of closed streamlines we sketch the whole
evolution of a closed streamline in time dependent flows. This results in a tube shaped
visualization representing the closed streamline over time. The emerging and vanishing
of the closed streamline can be easily investigated to get more insight into this feature.

In combustion processes closed streamlines in a three dimensional flow are a hint for
recirculation zones. These zones describe regions inside the flow where the gas stays
quite long. This is necessary for the gas to completely burn. Therefore, we also show
how to detect this important feature in three dimensional vector fields.
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Kurzfassung

Vektorfelder treten im Zusammenhang mit sehr vielen wissenschaftlichen und inge-
nieurmafligen Problemen auf. Bei Verbrennungsvorgangen beispielsweise beschreiben
Vektorfelder den Verlauf des einstromenden Gases. Dieser Vorgang kann mit Hilfe von
Techniken der Vektorfeldvisualisierung verbessert werden. Ebenso lassen sich Wind-
kanalexperimente analysieren. Als Beispiel sei das Design einer Tragfliche genannt. Der
Fliigel kann optimiert werden, um eine bessere Umstromung zu erreichen. Methoden
der Vektorfeldvisualisierung helfen dem Ingenieur, kritische Eigenschaften der Stromung
zu erkennen. Dementsprechend erlangten Methoden, die Merkmale der Stromung
aufzeigen, in den letzten Jahren immer groflere Bedeutung.

Topologische Methoden werden héufig eingesetzt, um Vektorfelder zu visualisieren,
da sie sehr deutlich die Struktur des Vektorfeldes aufzeigen. In fritheren Veroffentlichun-
gen uber topologische Methoden wurden geschlossene Stromlinien bisher vernachlassigt.
Da geschlossene Stromlinien sich jedoch genauso verhalten konnen wie Quellen und
Senken, stellen sie ein wichtiges Merkmal dar, das nicht weiter ignoriert werden kann.

Um diesen Mangel zu beseitigen, befasst sich die Arbeit mit dem Auffinden dieser
topologischen Eigenschaft. Es wird ein neuartiger Algorithmus vorgestellt, der in der
Lage ist, geschlossene Stromlinien in Vektorfeldern, die auf einem Gitter definiert sind
und linear interpoliert werden, zu finden. Dazu wird nach Bereichen gesucht, die von
einer Stromlinie nicht mehr verlassen werden konnen. Gemafl dem Poincaré-Bendixson-
Theorem befindet sich eine geschlossene Stromlinie in diesem Bereich, falls er keine
kritischen Punkte enthalt. Anschlieflend wird die genaue Position mit Hilfe der Poincaré-
Abbildung bestimmt. Im Gegensatz zu anderen Algorithmen setzt diese Methode nicht
die Existenz einer geschlossenen Stromlinie voraus. Daher ist das hier vorgestellte Ver-
fahren in der Lage, geschlossene Stromlinien auch tatsachlich aufzufinden. Eine Paral-
lelisierung dieses Algorithmus wird ebenfalls beschrieben, um die benotigte Rechenzeit
zu reduzieren. Die Laufzeit der Implementation ist dabei umgekehrt proportional zur
CPU-Geschwindigkeit der verwendeten Computer.

Um ein besseres Verstandnis fiir geschlossene Stromlinien zu bekommen, wird der
gesamte Lebenszyklus geschlossener Stromlinien in zeitabhangigen Vektorfeldern aufge-
zeigt. Dies resultiert in einer rohrenformigen Darstellung, die geschlossene Stromlinien
iber die Zeit reprasentiert. Die Entstehung und das Verschwinden der geschlossenen
Stromlinie kann einfach untersucht werden, um mehr Einblick in dieses Merkmal zu
erhalten.

Bei Verbrennungsvorgéingen sind geschlossene Stromlinien in dreidimensionalen
Stromungen ein Indiz fiir Rezirkulationsbereiche. Diese Bereiche beschreiben Regionen
innerhalb der Stromung, in denen sich das Gas relativ lange aufhalt. Dies ist notwendig,
damit das Gas vollstindig verbrennen kann. Aus diesem Grund wird zudem aufgezeigt,
wie dieses wichtige Merkmal in dreidimensionalen Vektorfeldern gefunden werden kann.
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Chapter 1

Introduction

Many of the problems in natural science and engineering involve vector fields. Fluid
flows, electric and magnetic fields are nearly everywhere, therefore measurements and
simulations of vector fields are increasing dramatically. As with other data, analysis is
much slower and still needs improvement. Mathematical methods together with visu-
alization can provide help in this situation. In most cases, the scientist or engineer is
interested in integral curves of the vector field like streamlines in fluid flows or mag-
netic field lines. The qualitative nature of these curves can be studied with topological
methods developed originally for dynamical systems. Especially in the area of fluid
mechanics, topological analysis and visualization have been used with success [GLLI1],
[HH91], [Ken98], [SHJKO00].

In visualization, topological methods mostly are not able to precisely show the exis-
tence of closed streamlines. Only stopping criteria like elapsed time, number of integra-
tion steps or the length of the streamline are used to prevent the algorithm from running
forever. But closed streamlines play an important role in topological methods because
they can act in the same way as sources or sinks; they can attract or repel the flow.
Therefore there is a strong need for an algorithm that is able to detect this important
topological feature.

Figure 1.1 shows an example of a closed streamline. The streamline is started in the
center of the figure. After a short while the integrated streamline ends up in a loop so
that the streamline cycles around and around. Consequently, the computation normally
would not terminate without detecting this situation or using an imprecise stopping
criterion like the ones mentioned before. The disadvantage with these imprecise stopping
criteria is that we cannot distinguish between a streamline that spirals very slowly and
a streamline that runs into a closed streamline. Therefore, the streamline is stopped
to early in some cases. If we were able to really detect whether we end up in a closed
streamline or not we can compute the whole streamline. In this case we additionally
accelerate the integration process because we do not cycle around the closed streamline
anymore until the stopping criterion is fulfilled.

Department of Computer Science, University of Kaiserslautern, Germany



2 Introduction

Figure 1.1: A closed streamline.

There are several applications for an algorithm that detects closed streamlines. In
combustion processes, a special amount of time is necessary for the gas to burn com-
pletely. If we have a swirling jet where the gas is injected we have an inflow into a steady
medium. Consequently, we get regions with high turbulence in the resulting flow. To
locate areas where the gas stays very long we can use the closed streamlines in the flow
indicating those areas which are called recirculation zones [Hai99).

To illustrate the situation we computed a visualization of a simulated inflow into
a swirling jet. Figure 1.2 depicts the result. The flow is shown by a LIC image
[CL93][SH95|[HS98|. This method distorts a white noise image by smearing in the
direction of the flow. The inflow can be clearly identified in the middle of the picture.
The turbulent areas at the top and the bottom are emphasized also. Several closed
streamlines can be found in these regions of the vector field drawn in white. Conse-
quently, many recirculation zones can be identified by this method where chances are
good that the gas is able to completely burn.

Another application is the search for the eye of hurricanes [WFLT00]. A hurricane
consists of mainly two regions: the outer region where it has a great and destructive
power with a circulating flow and the inner area where almost nothing happens. If we
project the flow that describes the hurricane onto a horizontal plane these two regions
are divided by a closed streamline. To locate this boundary we only have to compute
the closed streamline of that vector field. As a result we have identified the eye of the
hurricane.

After describing the theoretical background in the second chapter which is necessary
for the understanding of the new algorithms that are described in this thesis, we explain
the algorithm for detecting closed streamlines in a two dimensional vector field in the
third chapter. This algorithm checks during the integration process if the streamline
reaches an area that cannot be left. In such a case, we have proven according to the
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Figure 1.2: Recirculation zones in a swirling jet simulation.

Poincaré-Bendixson theorem that there exists a closed streamline in that area. To locate
the exact position of this closed streamline the Poincaré map is used.

Since it is necessary to compute many streamlines to find every closed streamline in a
given dataset, we show a parallelization of our algorithm that detects closed streamlines
in chapter four. The streamlines that have to be computed are spread as different tasks
to the various clients in a Linux cluster. If a closed streamline is detected the client sends
back a visualization of that closed streamline to the server. The server displays all these
closed streamlines. This facilitates a faster computation of all closed streamlines. The
acceleration corresponds to the overall computation power of the whole Linux cluster.

Inspired by the books of Abraham and Shaw [AS82][AS83][AS84]|[AS88] we inves-
tigate the creation or vanishing of closed streamlines in chapter five. A vector field
is interpolated over time so that closed streamlines can emerge in special situations.
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4 Introduction

These situations are called bifurcations. The closed streamlines are followed over time.
This results in a tube shaped visualization that clearly shows the evolution of the whole
closed streamline.

We also want to detect closed streamlines in a three dimensional vector field. Al-
though the principle is quite similar to the two dimensional case there exist some essential
differences. The test if a streamline is able to leave a region is far more difficult in the
three dimensional case. This is described in detail in chapter seven.
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Chapter 2

Theory of Vector Fields

This chapter introduces the fundamental theory which is needed for the following chap-
ters. We mainly follow the description of Hirsch and Smale [HS74]. Other descriptions
can be found in [Tri02][GH83]|[Guc00].

2.1 Fundamental Theory

In order to talk about vector fields we need a precise definition of what a vector field
actual is.

Definition 2.1.1 (Vector field)
Let W C R" be an open subset. An n-dimensional vector field v is defined as a map

v W =R

As we can see from definition 2.1.1 a vector field gives us an n-dimensional vector at
an arbitrary position inside W. Vector fields occur in many applications. For instance,
we may have a flow in a wind tunnel experiment. This flow can be described by a
dynamical system. If we have a massless particle located at a position x inside the
flow, a dynamical system tells us where this particle is after a given time ¢. Therefore
a dynamical system should be continuously differentiable or at least continuous and
continuously differentiable in ¢.

Definition 2.1.2 (Dynamical system)
Let W C R" be an open subset. A dynamical system or flow is a C' map R x W 2
W, where ¢ fulfills the following conditions:

1. ¢(0) is the identity

2. ¢(t)op(s) = o(t+s) for allt,s € R

Department of Computer Science, University of Kaiserslautern, Germany



6 Theory of Vector Fields

We also write ¢(t,x) = ¢y(x).

There is a direct coherence between a dynamical system and a vector field shown by
the next remark.

Remark 2.1.3
Let W C R™ be an open subset and ¢ a dynamical system. Then there exists a vector
field v : W — R" that satisfies

v(z) = %(bt(x)‘t:o

Thus, if xy € W, v(xg) is the tangent vector to the curve defined by t — ¢;(xg) at
t = 0. From another point of view we can start with a given vector field v. With a given
point xq € W, this leads us to the Cauchy problem.

Definition 2.1.4 (Cauchy problem)
Let v be a vector field as in definition 2.1.1 and vy € W an arbitrary point. Then the
Cauchy problem is defined by the differential equation

7r(t) = v(z(1))

with the so called initial condition x(0) = x.

Then the dynamical system ¢ satisfying the equation in remark 2.1.3 gives us the
solution curve x(t) = ¢y(x) for the Cauchy problem.

Remark 2.1.5
The solution curve is also referred to as a streamline, an integral curve, a trajec-
tory, or an orbit.

Figure 2.1: A solution curve is always tangential to the defining vector field.
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From a geometrical point of view the trajectory z(t) is a curve which is always
tangential to the vector field v. This means that £z(t) equals v(z(f)) as shown in
figure 2.1. For every point xy € W there exists a unique solution curve which is shown
by the next theorem. But we need a short definition first.

Definition 2.1.6 (Lipschitz)
Let W C R" be an open subset. Let further v : W — R" be a vector field as in
definition 2.1.1. The vector field v is said to be Lipschitz on W if there exists a
constant K such that

v(z) —v(y)| < Klz -y

for all x,y € W. The constant K is called Lipschitz constant for v.
Theorem 2.1.7 (Existence and uniqueness)

Let v be a vector field as in definition 2.1.1 which is Lipschitz and xy € W an arbitrary
point. Then there exists an a > 0 and a unique solution

z:(—a,a) > W
of the Cauchy problem that satisfies the initial condition x(0) = zy.
Proof:
See [HS74], pages 162 through 167. [

It follows directly from this theorem that streamlines cannot cross each other due to
the uniqueness of solution curves.

Corollary 2.1.8 (Crossing streamlines)

Let v be a vector field as in definition 2.1.1 and xq,yy € W two arbitrary points with
xo # yo. Let further x(t) and y(t) be the solution curves with initial conditions x(0) = x,
respectively y(0) = yo. Unless these two solution curves are not identical they do not
intersect.

Proof:

Let  and y be two intersecting streamlines which are not identical. Let further p € W
be the intersection point. Then there exist ¢;,t, € R with z(t;) = y(t3) = p. Then there
are two streamlines starting at point p which contradicts to theorem 2.1.7. 0

This corollary is of great importance since it shows that two different streamlines
will never intersect. This feature will be exploited by our algorithm that detects closed
streamlines.

Definition 2.1.9 (Phase portrait)

Let v be a vector field as in definition 2.1.1 and ¢ the dynamical system associated to v.
Then the family of all solution curves represents the phase portrait of the dynamical
system ¢.
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8 Theory of Vector Fields

It is also possible to investigate vector fields over time. Therefore we define time
dependent vector fields.

Definition 2.1.10 (Time dependent vector field)
Let W C R" be an open subset. An n-dimensional time dependent vector field v
s defined as a map

v:RxW —=R"
(t,z) = v(w)

where t is the time parameter.

2.2 Data Structures

In most applications in Scientific Visualization the data is not given as a closed form
solution. The same holds for vector fields. Usually, the vector fields result from a
simulation or an experiment where the vectors are measured. In such a case, the vectors
are given at only some points of the domain of the Euclidean space. These points are
then connected by a grid. A special interpolation computes the vectors inside each cell
of the grid. In this chapter we restrict ourselves to the few types of grids that we used
in our algorithms in this section.

2.2.1 Triangular Grids

Figure 2.2: Triangular grid.

A very popular two dimensional grid type is the triangular grid. Figure 2.2 shows
an example for such a grid. This grid type facilitates to connect an arbitrary point set.
To get the vectors inside a cell we use an interpolation scheme based on barycentric
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Figure 2.3: Barycentric coordinates.

coordinates. Figure 2.3 explains the configuration. Let p be the point where we want
to interpolate the vector and pg, p;, and p, are the vertices of the triangle.

The barycentric coordinates by, by, and by describe the distances between the point
p; and the edge which is opposite to the vertex with the same index. For the barycentric
coordinates the equation Z?:o b; = 1 holds. The point p can be expressed in the
following way:

2
pzzbz"pi
i=0

Let v(p;) be the vectors at the vertices of the triangle. Then we can interpolate the
vector v(p) at the point p in the same way:

2
o(p) = _bi-v(p:)
i=0
To compute the zeros inside the triangle we need to solve the following linear equa-

tion:
2
Z b; - U(Pi) =0
i=0

Unless this system is degenerated, the solution is unique. Consequently, we get at most
one zero depending on whether the solution point lies inside the triangle or not.
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10 Theory of Vector Fields

2.2.2 Quadrilateral Grids

(a) Rectilinear grid. (b) Curvilinear grid.

Figure 2.4: Quadrilateral grids.

There exist two different types of quadrilateral grids. The first one is the rectilinear
grid. There every cell is a rectangle. The edges of the cells are orthogonal as shown
in figure 2.4a. The other type is the curvilinear grid. Here the boundary between the
cells is a curve consisting of points connected by straight lines. The boundary of more
than one cell does not need to be a straight line anymore as can be seen in figure 2.4b.
If we interpolate in such a cell we need to map it to a rectangular cell. This map ¢ is
not linear. Often one speaks of mapping from physical space into computational space.
Usually, a numerical method is used to do this mapping. Consequently, we can restrict
ourselves to the rectangular case when explaining interpolation in this case.

P3 P2
SF----- P
Po r P1

Figure 2.5: Local coordinates inside a rectangle.

We interpolate bilinearly inside each cell. Therefore, we introduce local coordinates
(r,s) with 0 < s, < 1 inside the cell of the point p where we want to interpolate.
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Figure 2.5 explains how this works. The vertex py has local coordinates (0,0), the
vertex p; the coordinates (1,0), the vertex py corresponds to (1, 1), while the last vertex
p3 is located at (0,1). Then we can use the following formula for the interpolation:

vip) =1 —=r)(1—3s) -v(py) +r(1—5s) v(p) +rs-v(p) + (1 —r)s-v(ps)

2.2.3 Tetrahedral Grids

Figure 2.6: Tetrahedron.

A tetrahedral grid consists of several tetrahedrons as shown in figure 2.6. Conse-
quently, a tetrahedral grid is a three dimensional grid. As with triangular grids an
arbitrary point set can be connected using this grid type. The interpolation scheme
works in an analogue way as the triangular case using barycentric coordinates. Con-
sequently, there is at most one zero inside each tetrahedron, also, if the interpolating
vector field is non-degenerate inside that tetrahedron.

2.2.4 Time dependent Data with Prism Cells

When dealing with time-dependent two-dimensional flows we can use the third dimen-
sion to represent time. We assume the vector field is given at time slices on a triangular
grid. These time slices v; : W — R? are connected using prism cells as shown in
figure 2.7. To interpolate the vectors we consider the following map

f:RxW — RxR?
(t,z) — ()

where W is the domain represented by the two dimensional grid of the time slices. Since
we need consistency with the piecewise affine linear interpolation that would be applied
on a 2D triangulation, we have to ensure that the restriction of the 3D interpolant
to each time plane is piecewise affine linear, too. That means that, fixing the time
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12 Theory of Vector Fields

Figure 2.7: Time prism cell.

coordinate and taking it as a parameter, the interpolant must be affine linear. This is
the reason why we choose the following interpolant inside each prism cell.

For a given prism cell lying between ¢; and #;41, let v;(z) = A;x + b, j € {i,i+ 1}
be the linear interpolation corresponding to the prism triangle faces lying in the planes
{t = t;} and {t = t;11} respectively. Then we define the interpolant over the whole
prism cell by linear interpolation over time:

tiy1 —t t—t;
o(t,z) = 2 p(a) + .

tiy1 — 1 tiv1 — 1
where ¢ € [t;,t;11]. This formula obviously ensures, for each fixed value of ¢, that v(x, )
is affine linear in z.

Vg1 ()

2.3 Critical Points

Critical points are from a topological point of view an important part of vector fields.
This special feature is described in more detail in this section. We first explain the
general case and then study the linear case.

2.3.1 General Case

We start with the definition of critical points in the general case. Then we classify
different types of singularities and talk about stability which is necessary to achieve a
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meaningful physical interpretation of vector fields.

Definition 2.3.1 (Critical point)

Let v : W — R" be a vector field as in definition 2.1.1 which is continuously differen-
tiable. Let further xo € W be a point where v(x) = 0. Then xq is called a critical
point of the vector field.

Remark 2.3.2

There are several different terms for critical points. They are also known as singular-
ities, singular points, zeros, or equilibriums.

2.3.1.1 Classification

Critical points can be classified using the eigenvalues of the derivation of the vector
field. For instance, we can identify sinks that purely attract the flow in the vicinity
while sources repel it purely.

Definition 2.3.3 (Sink)

Let v be a vector field as in definition 2.1.1 which is continuously differentiable and xq
a critical point of v. Let further Dv(xq) be the derivation of the vector field v at xq. If
all eigenvalues of Dv(xg) have negative real parts, xq is called a sink.

The following theorem shows that sinks really have an attracting property.

Theorem 2.3.4

Let v : W — R" be a vector field and xo a sink. Let further ¢ be the corresponding
dynamical system. Let us assume the real part of every eigenvalue is less than —c,
¢ > 0. Then there exists a neighborhood U C W of xy such that

1. ¢(x) €U for allz € U, t > 0.
2. There is an Fuclidean norm on R* such that
De(x) — 0| < e "o — @
forallx e U, t>0.
3. For any norm on R", there is a constant B > 0 such that
60(x) — w0l < Be "z — o]
forallx e U, t > 0.

Proof:
See [HS74], pages 181 and 182. [
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Corollary 2.3.5
Let v, ¢, and x, be as in the previous theorem. Then there exists a neighborhood U C W
of xy so that ¢y(x) converges to xg:

bi(z) = x9 ast — oo for all z € U

In the same way we can define sources.

Definition 2.3.6 (Source)

Let v be a vector field as in definition 2.1.1 which is continuously differentiable and xq
a critical point of v. Let further Dv(xq) be the derivation of the vector field v at xq. If
all eigenvalues of Dv(xq) have positive real parts, xy is called a source.

2.3.1.2 Stability

Since in computer science absolute exact calculation is not possible due to numerical
errors we need some sort of stability if we really want to classify critical points algorith-
mically. A critical point that changes its behavior even when the vector field is slightly
perturbed does not have a very significant meaning in a physical sense.

( )

- J

Figure 2.8: A critical point that is stable.

Definition 2.3.7 (Stable critical point)

Letv : W — R” be a vector field as in definition 2.1.1 which is continuously differentiable
and xo a stable critical point of v. If for every neighborhood U C W of xy there is a
neighborhood Uy C U of xy such that every streamline x(t) with z(0) € U, is defined and
x(t) € U for allt > 0 then xq is called o stable critical point.

Figure 2.8 illustrates a stable configuration.
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- J

Figure 2.9: An asymptotically stable critical point.

Definition 2.3.8 (Asymptotically stable critical point)
Let v, U, and Uy be as in the previous definition. If in addition Uy can be chosen so
that lim;_,, x(t) = xq then xqy is called an asymptotically stable critical point.

In figure 2.9 we sketch this situation.

d

c

Figure 2.10: A critical point that is unstable.

Definition 2.3.9 (Unstable critical point)

Letv : W — R” be a vector field as in definition 2.1.1 which is continuously differentiable
and xy a stable critical point of v. We call a critical point that is not stable an unstable
critical point. This means that there is a neighborhood U C W of xy such that for every
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neighborhood Uy C U of xqy there is at least one streamline x(t) starting at x(0) € U,
which does not completely lie in U.

Figure 2.10 shows an unstable critical point.

Figure 2.11: A critical point that is stable but not asymptotically stable.

For example, a sink is an asymptotically stable critical point and therefore stable.
An example of a critical point that is stable but not asymptotically stable is shown in
figure 2.11. All streamlines surround the critical point elliptically. This configuration
is rather critical because the slightest perturbation will change the critical point into a
source or a sink. Therefore, we want to distinguish between such numerically critical
situations and numerically stable ones.

Theorem 2.3.10
Let v be a vector field as in definition 2.1.1 which is continuously differentiable and x
a stable critical point of v. Then no eigenvalue of Dv(xg) has positive real part.

Proof:
See [HS74], pages 187 and 188. 0

To have a common term for such numerically stable configurations we use the notion
of hyperbolicity.

Definition 2.3.11 (Hyperbolic critical point)

Let v be a vector field as in definition 2.1.1 which is continuously differentiable and x
a critical point of v. If the derivative Dv(xy) has no eigenvalue with real part zero the
critical point is called hyperbolic.

Corollary 2.3.12
A hyperbolic critical point is either unstable or asymptotically stable.

This corollary shows that hyperbolic critical points avoid numerically critical situa-
tions. These points can be detected algorithmically since the behavior does not signifi-
cantly change if there is a numerical error that is small enough.
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2.3.2 Linear Case

Since we use linear or bilinear interpolation in our algorithms we want to analyze the
linear case in more detail. This also gives a better insight into the different types of
critical points. Therefore we examine critical points in linear vector fields. First of all,
we need to define what we exactly mean by a linear vector field.

Definition 2.3.13 (Linear vector field)
Let W C R™ be an open subset. A vector field

v: W —=R"
1s called linear, if there exists a linear map
A: W ->R"
and a vector b € R" such that
v(r)=Ax+b YreW

if in addition b = 0 then v is called homogeneous linear.

To get a better insight into linear vector fields we investigate the phase portrait of
the different types of linear vector fields. If we restrict ourselves to the hyperbolic case
where det A # 0 the vector b only gives a displacement so that we can neglect it in our
consideration. Nielson [NJ99] summarized all different cases that are possible. A linear
vector field can have at most one critical point due to the linearity. In order to get the
phase portrait we have to solve the Cauchy problem

da(t) = Az

dt
with initial condition z(0) =k, k € R".

Lemma 2.3.1}
Let v be a homogeneous linear vector field, which is described by the matriz A € Mat(n x
n). Then there exists a solution for the differential equation

Lx(t) = Ax(t) with initial condition x(0) = k € R" (2.1)
which is given by:

oo
‘ Ak
x = ek with e = E 7T

k=0

(2.2)
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Proof:

Compute the derivation £ (t):

d tAy 1 d tA 5 A tA
7€ k=k 7€ =k - Ae

since the derivation of ! can be computed as follows:

(t+h)A _ _tA
d tA _ 1 € €
e =lim ————
g h—0 h
y ptAphA _ ptA
= tMp—0
h
tA 1 eht—1
= " lim
h—0 h
=€t A

O

Let us have a closer look at two dimensional linear vector fields which can be de-
scribed by a matrix A € Mat(2 x 2). Then, we can distinguish between different cases

where we are able to compute the derivation.

Lemma 2.3.15

Let A € Mat(2 x 2) be a two dimensional matriz. Then there is an invertible matriz
P such that B = PAP!, where B corresponds to one of the following three different

types. A, u € C are the eigenvalues of A.

-6

Type two: A\ and p have non zero imaginary part:

a —b
5= )

Type three: A\ =y and A is not diagonalizable:

(1)

Type one: A is diagonalizable:

The next subsections describe the different types in detail. The differential equation
is solved to sketch the phase portrait. We assume that the matrices of the vector fields

are given in the form as shown in lemma 2.3.15.
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2.3.2.1 Linear Vector Fields of Type One

Lemma 2.3.16
Let v be a vector field of type one as described in lemma 2.3.15. Then the following
equation holds for the streamline x, where k = (Z;) 1s a point on the streamline.

,t)‘k]
o(t) = (ka) (2.3)
Proof:

A phase portrait of a vector field of type one can be described in principle in the following

way.
A0
A= (0 u)

Compute e'":

k=0
o 0\”
B . \0 tu
o Z k!
k=0
- Z 0
=0 k!
oo tA)k
(e 0
0 Y,
e 0
- ( 0 e"“)

Altogether we get the following equation describing the streamline.
et)\k]
z(t) =
0=y )

Therefore, we mainly get three different cases besides changing the orientation of the
vector field.

g

1st case: (A > 0 > pu) In this case we get the so called saddle singularity, which is
shown in figure 2.12.
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Figure 2.12: A saddle singularity.

Figure 2.13: A node singularity.

2nd case: (A < p < 0) An example for this case is the so called node singularity

shown in figure 2.13.

3rd case: (A = p < 0) Figure 2.14 shows such a focus singularity.

2.3.2.2 Linear Vector Fields of Type Two

The matrix A that represents the vector field mathematically describes a rotation and
a scaling. This can be shown easily when we define a rotational angle © := arccos(?)

where we set 7 := v/a? 4+ b2. We can deduce that:

a=rcos®
b=r7rsin®

Then we can write the matrix A as follows:

A - r 0 _ cos® —sin®
N0 7 sin® cos®
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Figure 2.14: A focus singularity.

Lemma 2.3.17
Let v be a vector field of type two. Then the following equation describes a streamline

where k = (kl) s a point on the streamline.

k2
ta (klcos(tb) - kQSin(tb)) (2.7)

z(t) =€
v(t) = e kisin(tb) + kocos(tb)

Proof:
We interpret the map 7" given by the matrix A algebraically by identifying R? with the
complex space C.

(z,y) & x + iy (2.8)

We get the following correspondence for 7'
(z,y) — T 41y
IT Multiplying with a-+ib (2.9)
(ax — by, bx + ay) <«— (ax — by) +i(bx + ay)

. . . a1 Qo
In the same way there is a correspondence e < e%*?. This results with e4 = ( )
as Qa4

in the following scheme:
(z,y) — T + 1y
}A Ieaw (2.10)
(a1 + agy, azx + agy) <+— e*(xcosb— ysinb+ i(zsinb + ycosbh))

A

By comparing the coefficients we can conclude that the matrix e” can be represented

as follows:
oA pa cosb —sinb
o sinb cosb
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According to lemma 2.3.14 the following equation holds for a streamline containing the
point k = (zl)

4 [Ficos(th) — kosin(th)
w(t) =" (klsin(tb) + k‘gcos(tb)> (211)

O

Figure 2.15: A center singularity.

Figure 2.16: A spiral singularity.

With this equation we can see how the streamlines behave in such a vector field. If
we have a = 0, the vector field describes simple circles as shown in figure 2.15, while we
get a spiral shaped phase portrait if we set a # 0 as sketched in figure 2.16.
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2.3.2.3 Linear Vector Fields of Type Three

Lemma 2.3.18
Let v be a vector field of type three and A the corresponding matriz where v(x) = Ax

A0 . . - ‘ .
and A = 1 )\> . Then we can describe a streamline containing the point k = (Z;) with
the following equation:

ks
z(t) = e 2.12
(*) (/ﬂt + k2> ( )

Proof:
The matrix A can be split up in the following way:

A0 0 0
A_<1 )\>_)\-I+<1 O)
) the following equation holds which can be easily computed.

» (0 0\ _
M_<00 =0

Consequently, we get M* = 0 for all k > 2.
Then we can compute e’ as follows:

0 0

For the matrix M = (1 0

oA — HAT+M)

AL+ 00

_ t 0
=e

00

— oA\ 0

=™ (I + <(; 8)) , using the above equation

10
_ i
i)

Therefore, the following equation describes a streamline containing the point k = (21)

z(t) = e - ( i > (2.13)

kit + ko
U

Figure 2.17 shows an example for such an improper node singularity.
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Figure 2.17: An improper node singularity.

2.4 Streamline Computation

In this section we describe the computation of streamlines. Since the vector field is
given on a triangular, quadrilateral, or tetrahedral grid the vectors inside the cells are
interpolated linearly respectively bilinearly. In order to compute a streamline we have
to solve the Cauchy problem where the initial condition is given by the starting point
of the streamline. Therefore we need to solve a differential equation. Consequently, the
streamlines itself have to be calculated using ODE solvers like for instance Runge-Kutta.
The streamlines can be integrated in positive or negative direction starting at the given
starting point. To integrate in negative direction we only need to invert the vector field.
In addition, it is possible to compute streamlines exactly inside triangular cells.

2.4.1 Numerical Computation

For numerical integration we use standard methods that can be found in the numerical
literature [Tri02][Feh69][PTVF92][Guc00]. We favor predictor-corrector methods like
Runge-Kutta method with adaptive stepsize. An optimized implementation for a fifth
order Runge-Kutta method with adaptive stepsize can be found in [PTVF92]. These
methods only use the interpolation method inside the cells but do not depend on a
special type of grid.

2.4.2 Exact Computation

On a triangular grid the vector field is interpolated linearly. Inside a triangular cell we
can represent the vector field as a single linear vector field as in subsection 2.3.2. In
this subsection we also explained an exact solution of the differential equation that has
to be solved in order to compute a streamline. This method was first introduced by
Nielson [NHM97]. Consequently, we can calculate a streamline starting at an arbitrary

Department of Computer Science, University of Kaiserslautern, Germany



Closed Streamlines in Flow Visualization 25

starting point using these formulas inside a triangle. When the streamline leaves the
triangle we determine the intersection with one of the edges of the triangle numerically.
Then we can start the integration process in the neighboring cell at that intersection.
This way we can go from one triangle to another.

2.5 Closed Streamlines

When computing streamlines it often happens that the streamline computation does
not terminate. This is mostly due to closed streamlines where the streamline ends up
in a loop that cannot be left. These closed streamlines are introduced and explained
in this section. More about the theoretical background can be found in several books
[YqSILs*86][Rou98].

2.5.1 Limit Sets

The topological analysis of vector fields considers the asymptotic behavior of streamlines.
There we have two different kind of so called limit sets, the origin set or a-limit set of
a streamline and the end set or w-limit set.

Definition 2.5.1 («a-limit set)
Let s be a streamline in a given vector field v. Then we define the a-limat set as the
following set:

{p e R*3F(t,), C R t, — —o0, lirglO s(tn) — p}

n—

Definition 2.5.2 (w-limit set)
Let s be a streamline in a given vector field v. Then we define the w-limat set as the
following set:

{p e R’ 3(t,)%, C R, t, — o0, lim s(t,) — p}

n—oo

Remark 2.5.3
Let v be a vector field as in definition 2.1.1. We speak of an a- or w-limit set L of v if
there exists a streamline s in the vector field v that has L as a- or w-limit set.

If the a- or w-limit set of a streamline consists of only one point, this point is a critical
point. The most common case of a a- or w-limit set in a planar vector field containing
more than one inner point of the domain is a closed streamline which is declared in the
next definition. Figure 2.18 shows an example for a- and w-limit sets. Here we have a
critical point and a closed streamline. The critical point and the closed streamline are
their own - and w-limit set. For every other streamline the closed streamline is the
w-limit set. If the streamline starts inside the closed streamline the critical point is the
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Figure 2.18: Example for a- and w-limit sets.

a-limit set. Otherwise the a-limit set is empty. Now that we showed an example for a
closed streamline let us give a precise definition.

Definition 2.5.4 (Closed streamline)
Let v be a vector field as in definition 2.1.1. A closed streamline v : R — R", t — ~(t)
s a streamline of a vector field v such that there is a ty € R with

v(t+ nty) =v(t) VneN
and v not constant.

Remark 2.5.5
There are several different terms describing a closed streamline. The terms limait cycle,
closed orbit, and closed streamline are equivalent.

Similar to critical points we define asymptotically stability of closed streamlines. If
a closed streamline is asymptotically stable it is attracting.

Definition 2.5.6 (Asymptotically stability of closed streamlines)

Let v : W — R" be a vector field as in definition 2.1.1 that is continuously differentiable.
Let further ¢ be the corresponding dynamical system and v C W a closed streamline. If
for every neighborhood U C W with v C U there is a neighborhood Uy C U with v C Uy
such that ¢y(x) € U for all x € Uy and t > 0 and

lim min][6,(x) — 2[||z € 7} = 0
then v s called asymptotically stable closed streamline.

This means that an asymptotically stable closed streamline attracts the flow inside a
special neighborhood. It also follows from this definition that an asymptotically stable
closed streamline is isolated from other closed orbits. In the same way there are closed
streamlines that are repelling. For instance, by inverting the vector field we can turn
an attracting closed streamline into a repelling one.
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2.5.2 Poincaré Map

Figure 2.19: Poincaré section (a) and Poincaré map (b).

Let us assume we have a two dimensional vector field containing one limit cycle.
Then we can choose a point P on the limit cycle and draw a cross section S which is
a line segment not parallel to the limit cycle across the vector field. This line is called
a Poincaré section. If we start a streamline at an arbitrary point x on S and follow
it until we cross the Poincaré section S again, we get another point R(x) on S. This
results in the Poincaré map R. Figure 2.19 illustrates the situation. The left part shows
the Poincaré section with the limit cycle in the middle drawn with a thicker line, while
the right part displays the Poincaré map itself. Obviously the point P on the limit cycle
is mapped onto itself. Consequently, it is a fixed point of the Poincaré map.

Let us precise this in some definitions:

Definition 2.5.7 (Cross section)

Let v be a vector field as in definition 2.1.1 and S C R"™ an open set on a hyperplane
of dimension n — 1 that is transverse to v. Transverse to v means that v(x) ¢ S for all
x €S. Then S is called a cross section.

Definition 2.5.8 (Poincaré map)

Let v be a vector field and ¢ the dynamical system belonging to v. Let further be S a
cross section that intersects a closed streamline at a point P. Then the Poincaré map
is defined as the map R : S — S such that

x = ()
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where t is the time the streamline started at x needs to intersect the cross section again
after one turn.

Remark 2.5.9
It is obvious that the point P on the closed streamline is a fixed point of the Poincare
map.

2.5.3 The Poincaré-Bendixson Theorem

In this subsection we show a fundamental result which makes it easier to find closed
streamlines in a two dimensional vector field. This property is exploited by our algorithm
which is introduced later.

Theorem 2.5.10 (Poincaré-Bendixson Theorem)

Let W C R? be an open subset and v : W — R? a two dimensional, continuously
differentiable vector field. Let further L. C W be a nonempty compact limit set of the
vector field v that contains no critical point. Then L describes a closed streamline.

Proof:
See [HS74], pages 248 and 249. 5

Corollary 2.5.11

Let W C R? be an open subset and v : W — R? a two dimensional, continuously
differentiable vector field. Let further D C W be a nonempty compact subset which
contains no critical point and s a streamline inside D. If the streamline s does not leave
D then there exists a closed streamline inside D.

Using this corollary our algorithm to detect closed streamlines can simply integrate
a streamline and check during the integration process if it runs into a compact region
that is never left. If we find such a region this corollary states that we found a closed
streamline.

2.6 Vector Field Topology

The topological graph, or simply topology, of a vector field describes the structure of
the phase portrait. Considering saddle singularities we can define separatrices.

Definition 2.6.1 (Separatrices)
Let v be a vector field as in definition 2.1.1 and xqy a saddle singularity. The streamlines
emerging in eigendirection are called separatrices.
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Each separatrix connects the saddle point with another critical point or the boundary
of the vector field. The separatrices divide the vector field in various topological regions.
Each region cannot be left by an individual streamline except for the case where the
streamline crosses the boundary. Furthermore, every streamline in that region that
does not reach the boundary converges to the same critical point or closed streamline
for t — oo and to the same critical point or closed streamline for ¢ — —oc. Now we
introduced every concept needed for vector field topology.

Definition 2.6.2 (Topology)
Let v be a vector field as in definition 2.1.1. The topology is built by all critical points,
separatrices and closed streamlines of v.

[ , |
‘ ' | |
\ -/ \\ )///u////

(a) (b)

Figure 2.20: Topological graphs of two vector fields.

Figure 2.20 shows two examples for topological graphs of a simple vector field. The
critical points are colored according to its type: saddles are drawn in red, sinks are blue
while sources are colored green. The vector field in subfigure (a) contains one closed
streamline while the other subfigure does not contain any closed streamlines. In both

pictures we can clearly recognize the principle structure of the flow inside the vector
fields.
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2.7 Structural Stability

If a vector field is slightly perturbed it may happen that the topology stays the same if the
change is sufficiently small. This means that there exists a homeomorphism that maps
each streamline of the original flow to the perturbed one. This homeomorphism gives a
one-to-one correspondence between critical points and closed streamlines of the flow. If
such a homeomorphism exists we say that the two flows are topologically equivalent.

Definition 2.7.1 (Topologically equivalent)

Let v and w be two vector fields as in definition 2.1.1. Let further ¢ and i be the
dynamical system according to v respectively w. If there exists a homeomorphism h :
R" — R™ such that for any t, there is a ty with

h’(¢t1 (T)) = wtz (T)

then v and w are topologically equivalent.

To define neighboring vector fields we need a norm on vector fields first. Then we
can define neighboring vector fields as vector fields that differ only slightly.

Definition 2.7.2

Let v be vector field as in definition 2.1.1 that is continuous differentiable. Then the
norm ||v|| of a vector field is defined as ||v|| = max({||v(x)|||z € W} U {||Dv(z)|||x €
W), We allow ||v]| = co.

Definition 2.7.8 (Neighborhood)

Let v be a vector field as in definition 2.1.1 that is continuous differentiable. Let further
N ={w e {vjv: W — R"}|||v — w|| < €}. This means that every vector field w € N is
a perturbed version of v. Then N is called a neighborhood of v.

If there exists a neighborhood N of a given vector field v where every vector field is
topologically equivalent to the other, the vector field v is called structural stable. This
means that the topology of the vector field that is slightly perturbed stays the same.
The following definition precises that.

Definition 2.7.4 (Structural stable)

Let v be a vector field as in definition 2.1.1. If there is a neighborhood N of v such
that every vector field w € N is topologically equivalent to v then v is called structural
stable.

We now want to give a theorem that explains when a two dimensional vector field
is structural stable. But first we need a definition which shows a special configuration
concerning saddle singularities. Vector fields containing such a configuration can never
be structural stable.
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(a) Heteroclinic connection (b) Homoclinic connection
Figure 2.21: Saddle connections.

Definition 2.7.5 (Saddle connections)

Let v be a vector field as in definition 2.1.1 and sy and s, two saddle singularities
of v. If a separatriz connects s; and sy then this separatrixz is called a heteroclinic
connection. If a separatriz connects s, with itself this separatriz is called homoclinic
connection.

Figure 2.21 shows the two different configurations. The next theorem shows that
for structural stability in a two dimensional vector field it is necessary that the critical
points and closed streamlines need to be hyperbolic. Additionally, saddle connections
are not allowed.

Theorem 2.7.6
Let v : W — R? a vector field as in definition 2.1.1 with a finite number of critical
points and closed streamlines. Then v is structurally stable if and only if

1. all critical points of v are hyperbolic.
2. each closed streamline of v is either repelling or attracting.

3. there are no saddle connections.

Proof:
See [HS74], pages 314 through 317. 0

2.8 Bifurcations

Closed streamlines are introduced in the field by structural changes. When a vector field
changes over time there may be a change in the topology from one state to another.
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This, of course, implies that the vector field is not structurally stable in that case. The
unstable state in between is called a bifurcation. This change may only affect one critical
point and its nearer surrounding. Then we call it a local bifurcation. The other case is
a global bifurcation where the global structure of the flow is changed.

Here we consider only bifurcations that result in the creation or vanishing of a closed
streamline. The main types are the Hopf Bifurcation which is a local bifurcation and
the Periodic Blue Sky in 2D Bifurcation which is a global one.

@ @@

(a) (b) (c)

Figure 2.22: Hopf bifurcation.
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2.8.1 Hopf Bifurcation

Let us assume that we are given an attracting focus as in figure 2.22a so that a stream-
line spirals around this critical point and finally converges to it. If the attracting effect
weakens the number of rotations of the streamline will increase as in figure 2.22b. Con-
tinuing with this process the attracting focus becomes a center point (figure 2.22¢) which
is an unstable structure: the Hopf bifurcation has occurred. Going further, the structure
becomes stable again and we have now a repelling focus. Since the global structure of
the flow has not changed, we still have an inflow from the outside and a flow starting at
the critical point. Consequently, a closed streamline appears according to the Poincaré-
Bendixson-Theorem [GH83] as in figure 2.22d and 2.22e. Inverting the direction of time,
we get a transition from a closed streamline with a repelling focus inside into an attract-
ing focus over an instantaneous center where the closed streamline vanishes. Similar
transitions are obtained by inverting the direction of the flow, i.e. by replacing sources
by sinks. (It may be noted that we can apply the Poincaré-Bendixson-theorem only if
the vector field is continuous. Further we have a region without critical points.)

2.8.2 Periodic Blue Sky in 2D Bifurcation

(a) (b) (¢)
Figure 2.23: Periodic Blue Sky in 2D.

In this type of bifurcation there are two different types of critical points involved:
a saddle and an attracting focus. Figure 2.23a shows the situation. As the attracting
effect of the focus gets weaker and weaker we see a homoclinic connection after some
time where the saddle is connected to itself as shown in figure 2.23b. This results in a
bifurcation: when this configuration breaks up again we find a limit cycle which simply
appears out of the blue. The reason for the occurrence of the closed streamline is that the
attracting focus is totally unaffected by the whole event. Since there is an outflow to the
critical point inside and to the saddle there must be a critical point or a closed streamline
in this region according to the Poincaré-Bendixson theorem. Because of the fact that
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there are only the two critical points a closed streamline emerged. This configuration
is shown in figure 2.23c. Other bifurcations of the same type can be constructed by
inverting time or replacing the attracting focus with a repelling one.
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Chapter 3

State of the Art

Flows occur in various different forms in science and engineering. For instance, a wind
tunnel experiment results in such a flow. The path of the air describes how the flow
behaves around a special object as, for example, a car. Inflows into special parts, like a
thrust chamber, are of interest also. There, the flow describes the injection of the gas.
The composition of gas and oxygen is very important in combustion processes. A better
insight into the flow can help optimizing this process.

Several visualization methods are available at present. Here, we concentrate on
describing these methods that are useful in our application area. An overview over the
various visualization methods can also be found in other publications [GLW97] and PhD
theses [Lof98][Tri02].

3.1 Vector Field Visualization

Various methods exist that show different aspects of vector fields. Hedgehog methods
[PvW93] draw arrows tangential to the flow. Each arrow represents a vector at that
position. The length shows the velocity. The principle structure of the flow can be
recognized using this method. But special features like closed streamlines can easily be
overseen. In the three dimensional case, occlusion problems occur so that an analysis of
the vector field is difficult with this method.

Texture based methods visualize the whole phase portrait. There are mainly two
different methods for creating the texture: spot noise [vW91][dLvW95][dLLPV96] and line
integral convolution (LIC) [CL93]. To create a spot noise texture, randomly weighted
and positioned spots are accumulated. The shape of the spots controls the texture
locally. If we align, for instance, the larger axis of the spots parallel to the flow direction
the resulting texture visualizes the vector field. The LIC method uses a white noise
texture as a basis. This texture gets smeared in the flow direction: another texture is
created where for every pixel a short streamline is computed and the color values of
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Figure 3.1: Vector field containing a closed streamline visualized using the LIC method.

each pixel of the white noise texture that is crossed by this streamline is summed up.
Figure 3.1 shows an example of a LIC image.

Many extensions [KB96][SJM96] and performance optimizations [SHI5|[SZH96] exist
for this method. To introduce orientation information oriented line integral convolution
(OLIC) was proposed by Wegenkittl et al. [WG97][WGP97|. For time-dependent flows
the standard method is not suitable because it results in a flickering animation. There-
fore some extensions exist [Lan93][FC95] like for instance unsteady flow line integral
convolution (UFLIC) [SK97][SK98]. This method is based on the fast LIC algorithm
[SH95]. The difference is in the convolution kernel: to achieve temporal coherence only
the pixel calculations with a smaller time-stamp than the actual one are considered.

To track a particle in the flow over time streamlines, streaklines, and pathlines|Han93|
[Lan94] are used. A streamline shows the path of a massless particle in the flow. Such
a particle follows the trajectory of the dynamical system. A streakline visualizes the
path of dye injected for a period of time at a fixed position into a time dependent flow
while a pathline only follows a single particle. A particle corresponds to a point moving
through the flow. If we use more general objects like lines, circles, or implicit surfaces
streamsurfaces, streamribbons, streamtubes, or streamballs are created [BDH'94].
Also, an n-sided polygon can be placed perpendicular to the flow and moved along the
trajectory [SVLI1]. This method additionally depicts local flow attributes, like rotation
and shear.

Department of Computer Science, University of Kaiserslautern, Germany



Closed Streamlines in Flow Visualization 37

3.2 Topological Methods

Topological methods depict the structure of the flow by connecting sources, sinks, and
saddle singularities with separatrices. Critical points were first investigated by Perry
[PF74][Per84)|[PC87], Dallmann [Dal83], Chong [CPC90] and others. The method itself
was first introduced in visualization for two dimensional flows by Helman and Hesselink
[HH89b|[HH89a|[HHI0|[HHI1][Hel97]. Several extensions to this method exist. Scheuer-
mann et al. [SHJKO00] extended the method to work on a bounded region. To get the
whole topological skeleton of the vector field, points on the boundary have to be taken
into account, also. These points are called boundary saddles. To create a time depen-
dent topology for two dimensional vector fields, Helman and Hesselink [HH91] use the
third coordinate to represent time. This results in surfaces representing the evolution
of the separatrices. A similar method is proposed by Tricoche et al. [TSHO1][TWSH02]
but this work focuses on tracking singularities through time. Although closed stream-
lines can act in the same way as sources or sinks, they are ignored in the considerations
of Helman and Hesselink and others.

Figure 3.2: Streamsurface inside the blunt fin dataset from NASA [HB90].

To extend this method to three dimensional vector fields, Globus et al. [GLLI1] pre-
sented a software system that is able to extract and visualize some topological aspects
of three dimensional vector fields. The various critical points are characterized using the
eigenvalues of the Jacobian. This technique was also suggested by Helman and Hesselink
[HH91]. But the whole topology of a three dimensional flow is not yet available. There,
streamsurfaces are required to represent separatricies. A few algorithms for computing
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streamsurfaces exist [Hul92][SBH*01] but are not yet integrated in a topological algo-
rithm. Figure 3.2 shows a streamsurface inside the famous blunt fin dataset provided
by NASA [HB90] constructed with the algorithm by Scheuermann et al. [SBHT01].

3.3 Closed Streamlines in Visualization

There are some algorithms to find closed streamlines in dynamical systems that can be
found in the numerical literature. Aprille and Trick [AT72] proposed a so called shooting
method. There, the fixed point of the Poincaré map is found using a numerical algo-
rithm like Newton-Raphson. Dellnitz et al. [DJ99] detect almost cyclic behavior. It is a
stochastical approach where the Frobenius-Perron operator is discretized. This stochas-
tical measure identifies regions where trajectories stay very long. But these mathemat-
ical methods typically depend on continuous dynamical systems where a closed form
description of the vector field is available. This is usually not the case in visualization
and simulation where the data is given on a grid and interpolated inside the cells. Van
Veldhuizen [vV87] uses the Poincaré map to create a series of polygons approximating
an attracting closed streamline. The algorithm starts with a rough approximation of
the closed streamline. Every vertex is mapped by the Poincaré map iteratively to get a
finer approximation. Then, this series converges to the closed streamline.

To get a hierarchical approach for the visualization of invariant sets, and therefore
closed streamlines also, Biirkle et al. [BDJ*99] enclose the invariant set by a set of
boxes. They start with a box that surrounds the invariant set completely. This box is
successively bisected in cycling directions. It is always ensured that the result still in-
cludes the complete invariant set. Using this bisection, an approximation of the invariant
set is finally found which can be rendered using a volume renderer. The publication of
Guckenheimer [Guc00] gives a detailed overview concerning invariant sets in dynamical
systems.

Some publications deal with the analysis of the behavior of dynamical systems.
Schematic drawings showing the various kinds of closed streamlines can be found in the
books of Abraham and Shaw [AS84][AS88|. Fischel et al. [FDM™197] presented a case
study where they applied different visualization methods to dynamical systems. In their
applications also strange attractors, like the Lorentz attractor, and closed streamlines
occur. So called sweeps which are trajectories represented as tubes are used. These
sweeps allow to introduce a color coding scheme. For instance, the color can help to
recognize that a trajectory still slowly moves towards a closed streamline that weakly
attracts.

Wegenkittl et al. [WLG97] visualize higher dimensional dynamical systems. To
display trajectories parallel coordinates [ID90] are used. A trajectory is sampled at
various points in time. Then these points are displayed in the parallel coordinate system
and a surface is extruded to connect these points. As an example, also a chaotic attractor
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derived from the Lorentz system is visualized. Hepting et al. [HDER95] study invariant
tori in four dimensional dynamical systems by using suitable projections into three
dimensions to enable detailed visual analysis of the tori. This visualization can help
when limits of mathematical analysis are reached to get more insight into the dynamical
system.

Figure 3.3: Poincaré section with closed streamline (image courtesy of Helwig Hauser,
VRVis|LKG97]).

Loffelmann [Lof98][LKGI7] uses Poincaré sections to visualize closed streamlines
and strange attractors. Poincaré sections define a discrete dynamical system of lower
dimension which is easier to understand. The Poincaré section which is transverse to
the closed streamline is visualized as a disk. On the disk, spot noise is used to depict
the vector field projected onto that disk. By this method, it can be clearly recognized
whether the flow, for instance, spirals around the closed streamline and is attracted
or repelled or if it is a rotating saddle. Additionally, streamlines and streamsurfaces
show the vector field in the vicinity of the closed streamline that is not located on the
disk visualizing the Poincaré section. Figure 3.3 shows an example of that visualization
method.

3.4 Distributed Computing

Due to increasing computing power during the last years flow simulations became larger
and larger at finer resolutions. Often, these simulations are computed on a parallel
machine. Consequently, it takes a long time to compute an appropriate visualization for
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such big datasets. Especially, when dealing with an algorithm that needs to compute
many streamlines it helps a lot to compute this in parallel also. Several parallel algo-
rithms exist in visualization. In the following, we want to list a few of them that deal
with problems that are related to this work.

Sujudi et al. [SH96| presented a method for computing streamlines in a parallel
environment by splitting the dataset into several sub-domains. If the streamline leaves
a sub-domain another process responsible for the actual domain has to continue the
computation. Reinhard et al. [RCJ99] proposed a parallel rendering method that dis-
tributes tasks for each ray which has to be computed to the different processors of the
parallel machine. A parallelization of line integral convolution was presented by Zdockler
et al. [ZSH96] where the vector field is divided into several subdomains depending on
the number of processors used.
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Chapter 4

Detection and Visualization in
Planar Flows

This chapter describes an algorithm that detects if an arbitrary streamline ¢ converges
to a closed curve, also called a limit cycle. This means that ¢ has v as a- or w-limit set
depending on the orientation of integration. We do not assume any knowledge on the
existence or location of the closed curve, so that the algorithm can detect stable closed
streamlines. We exploit the fact that we use linear interpolation inside the cells for
the proof of our algorithm. But the principle of the algorithm works on any piecewise
defined planar vector field where one can determine the topology inside the pieces. First,
we describe how to explain and prove the presence of a closed streamline and finally we
give a procedure how to find the exact position of the closed streamline.

4.1 Detection of Closed Streamlines

In a precomputational step every singularity of the vector field is determined. To find
all stable closed streamlines we mainly compute the topological skeleton of the vector
field. We use an ordinary streamline integrator, like for instance an ODE solver using
Runge-Kutta. But we extended this streamline integrator so that it is able to detect
closed streamlines. In order to find all closed streamlines that reside inside another
closed streamline we have to continue integration after we found a closed streamline
inside that region.

4.1.1 Theory

The basic idea of our streamline integrator is to determine a region of the vector field
that is never left by the streamline. According to the Poincaré-Bendixson-Theorem, a
streamline approaches a closed streamline if no singularity exists in that region.
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Figure 4.1: A streamline approaching a limit cycle has to reenter cells.

Notation 4.1.1 (Actually investigated streamline)
We use the term actually investigated streamline to describe the streamline that
we check if it runs into a limit cycle.

To reduce computational cost we first integrate the streamline using a Runge-Kutta-
method of fifth order with an adaptive stepsize control. Every cell that is crossed by the
streamline is stored during the computation. If a streamline approaches a limit cycle it
has to reenter the same cell again as shown in figure 4.1. This results in a cell cycle:

Definition 4.1.2 (Cell cycle)

Let s be a streamline in a given vector field v. Further, let G be a set of cells representing
an arbitrary rectangular or triangular grid without any holes. Let C' C G be a finite
sequence ¢y, ..., C, of neighboring cells where each cell is crossed by the streamline s in
exactly that order and co = c¢,. If s crosses every cell in C' in this order again while
continuing, C is called a cell cycle.

This cell cycle identifies the region mentioned earlier. To check if this region can be
left we could integrate backwards starting at every point on the boundary of the cell
cycle. If there is one point converging to the actually investigated streamline we know
for sure that the streamline will leave the cell cycle. If not, the actually investigated
streamline will never leave the cell cycle. Since there are infinitely many points on the
boundary this, of course, results in a non-terminating algorithm. To crack this problem
we have to reduce the number of points we have to check. Therefore we define potential
exit points:

Definition 4.1.3 (Potential exit points)
Let C' be a cell cycle in a given grid G as in Definition 4.1.2. Then there are two kinds
of potential exit points. First, every vertex of the cell cycle C is a potential exit
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point. Second, every point on an edge at the boundary of C where the vector field is
tangential to the edge is also a potential exit point. Here, only edges that are part
of the boundary of the cell cycle are considered. Additionally, only the potential exit
pownts in the spiraling direction of the streamline need to be taken into account.

To determine if the streamline leaves the cell cycle we start a backward integrated
streamline to see where we have to enter the cell cycle in order to leave it at that exit.
We will show later that it is sufficient to only check these potential exit points if we
want to figure out if the streamline can leave the cell cycle.

Notation 4.1.4 (Backward integrated streamline)

We use the term backward integrated streamline for the streamline we integrate
by inverting the vectors of the vector field starting at a potential exit point in order to
validate this exit point.

exit

Figure 4.2: If a real exit point can be reached, the streamline will leave the cell cycle.

Definition 4.1.5 (Real exit points)

Let P be a potential exit point of a given cell cycle C' as in definition 4.1.3. If the
backward integrated streamline starting at P does not leave the cell cycle after one full
turn through the cell cycle, the potential exit point is called a real exit point.

Since a streamline cannot cross itself the backward integration starting at a real
exit point converges to the actually investigated streamline. Consequently, the actually
investigated streamline leaves the cell cycle near that real exit point. Figure 4.2 shows
such a real exit point.

If on the other hand no real exit point exists we can determine for every potential
exit point where we have a region with an inflow that leaves at that potential exit.
Consequently, the actually investigated streamline cannot leave near that potential exit
point.

With these definitions we can formulate the main theorem for our algorithm:

Department of Computer Science, University of Kaiserslautern, Germany



44 Detection and Visualization in Planar Flows

exit

exi

entr

Figure 4.3: If no real exit point can be reached, the streamline will approach a limit
cycle.

Theorem 4.1.6

Let C be a cell cycle with no singularity inside and E the set of potential exit points.
If there is no real exit point among the potential exit points E or there are no potential
exit points at all then there exists a closed streamline inside the cell cycle.

Proof: (Sketch)

Let C' be the cell cycle. It is obvious that we cannot leave the cell cycle C' if all backward
integrated streamlines started at every point on the boundary of C' leave the cell cycle
C'. According to the Poincaré-Bendixson-theorem, there exists a closed streamline inside
the cell cycle in that case.

We will show now that it is sufficient to treat only the potential exit points. If the
backward integrated streamlines starting at all these potential exit points leave the cell
cycle the backward integration of any point on an edge will also do.

Figure 4.4 shows the different configurations of potential exits. Let E be an arbitrary
point on an edge between two potential exit points. In part (a) both backward integrated
streamlines starting at the vertices Vi and Vj leave the cell cycle. Consequently, F cannot
be an exit. It would need to cross one of the other backward integrated streamlines which
contradicts with theorem 2.1.8.

Part (b) of figure 4.4 shows the case where the vector at a point on the edge is
tangential to the edge. Obviously, if F lies between Vi and T the backward integrated
streamline will leave the cell cycle immediately. If it lies between T and V5 and converges
to the actually investigated streamline it has to cross the backward integrated streamline
started at T". This contradicts with theorem 2.1.8. Because of the linear interpolation
at the edge, part (c) is also impossible.

We have shown that the actually investigated streamline cannot leave the cell cycle.
Consequently, there exists a closed streamline inside the cell cycle C' since there is no
singularity inside C'. 0
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Figure 4.4: Different cases of potential exits. (a) and (b) is impossible because stream-
lines cannot cross each other, (¢) contradicts with the linear interpolation on an edge,
in (d) and (e) both backward integrations converge to the actual streamline so that the
point E is a real exit.
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Remark 4.1.7

To get a possible configuration the backward integration starting at the vertex Vi must
also converge to the streamline because it cannot cross the backward integration starting
at point E as in part (d) of figure 4.4. Part (e) explains why we also need to investigate
the tangential case. If we start a backward integrated streamline at point E it converges
towards the actually investigated streamline. But if we only consider the vertices of the
edge, both exit points may be no real exit points. Therefore we also have to start a
backward integrated streamline at the point T, where the vector field is tangential to the
edge, to figure out that we leave the cell cycle at this edge. On the other hand, a backward
integrated streamline starting at any point between Vi and T immediately leaves the cell
cycle due to the linear interpolation.

4.1.2 Algorithm

With theorem 4.1.6 we are able to describe our algorithm in detail. It mainly consists
of the same three different states:

[ streamline integration: identifying one cell change after the other, check at each
cell if we complete a cell cycle.

[ checking for exits: going backwards through the crossed cells and looking for
potential exit points.

[ validating exit: integrating backwards a curve from potential exit through the
whole cell cycle.

Start (1) Streamlin critical point
[ — .
Integration

exit valid

boundary

(3) Validating

Exit cell cycle

detected

potential exit
found

(2) Checking limit cycle
for Exit

Figure 4.5: The UML state diagram of our algorithm.

exit
starts
outside

The algorithm switches its states after the events shown in the state diagram in
figure 4.5. We use a standard integration method to compute the streamline, first. In
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this step we only check for cell cycles. This saves computational time since the checking
of all the exits is rather expensive. If we detect a cell cycle we have to find all potential
exit points. After that we need to validate each of the potential exit points to figure out
if there is a real exit point among them. If this is the case we did not run into a closed
streamline yet. Therefore we continue with the standard integration. The algorithm
exits if we could not find a real exit point among all the potential exit points or if we
reached a critical point or the boundary of the vector field.

Remark 4.1.8
Theorem 4.1.6 guarantees that our algorithm detects closed streamlines if we check every
potential exit point.

Figure 4.6: Exits of a cell cycle.

Figure 4.6 shows a real example of our algorithm. There we start a streamline near
the source in the center of the figure. This streamline spirals until we find the first cell
cycle. We stopped the integration there for this example. The figure also shows all exits
and its backward integrated streamlines. The streamline itself is colored black. The grid
is displayed in a lighter color. In this example, every potential exit point is shown. We
can see that potential exit points which are passed by a backward integrated streamline
do not necessarily need to be investigated because if the backward integrated streamline
leaves the cell cycle the other one will also do. Figure 4.7 shows this in detail. There
the backward integrated streamline starting at Fxit 2 also has to leave the cell cycle
because it cannot cross the backward integrated streamline starting at Ezit 1. In the
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~

Exit 1

Exit 2

Figure 4.7: Exit of the cell cycle which does not need to be investigated.

other case, where the backward integrated streamline started at Ezit 1 stays inside the
cell cycle, we have to continue the actually investigated streamline, anyway.

Since the streamline spirals from the inner region to the outside, we only have to
consider the potential exits in that direction. In the example, every backward integrated
streamline leaves the cell cycle. Consequently, there is a limit cycle in this cell cycle
which can be localized as described in the next section.

4.2 Exact Location of Closed Streamlines

Since we know a region that is never left by the streamline we can find the exact position
of the closed streamline using the Poincaré map. This map is described in detail in the
subsection 2.5.2.

To find the exact position of the closed streamline we can use the edge where we
detected the cell cycle as a Poincaré section. Then we only have to find the fixed point
of the Poincaré map. We use a binary search to find this fixed point: we divide the edge
where we detected the cell cycle into two parts. At the mid point we start a streamline to
see which part of the edge is intersected by the streamline after one full turn. Since the
streamline cannot leave the cell cycle, it is guaranteed that the streamline intersects one
part of the edge. Then, this part is subdivided again and we start another streamline
at the mid point. This process continues until we are close enough to the fixed point of
the Poincaré map. We use the length of the part of the edge as a stopping criterion.

This fixed point gives us a point lying on the closed streamline. If we start another
streamline at that point this streamline will follow the closed streamline we are looking
for. After one turn, i.e. after reaching the start point again, we know the exact location
of the closed streamline.
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4.3 Results
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Figure 4.8: Simple vector field with limit cycle.

The first example is a vector field that contains only one closed streamline. It is
sampled on a regular grid using a slightly changed Van der Pol’s equation. The defining
equation for the vector field V' is

V(Z) - (y - Tg: “'”) . (4.1)

\ //// ST Y l/
1 \//
Pt l//
Vak l//é
V
= 7
z 7
2 7
Z | ////
// oM & é
Z T T AT
//f NN s e 4 //%

Figure 4.9: Simple vector field with no limit cycle.
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According to Hirsch and Smale[HS74] a limit cycle occurs if we set 0 < p < 1.
An analysis of the field shows that we have a source at (0,0). When starting our
algorithm near that singularity it integrates the streamline until it detects the limit cycle
as shown in figure 4.8. Figure 4.8 also includes the hedgehog of the vector field, a glyph
visualization method where we use arrows representing the vectors at the corresponding
position. The arrows are twice as long as the vectors of the field.

In figure 4.9, we investigate a vector field which spirals from the singularity to the
outer regions. Again, we used equation 4.1 but we set © = —0.02 to compute the
vector field. Consequently, there is no limit cycle in the vector field. Our algorithm
correctly fails to detect one, when started near the singularity at (0,0) and continues
the streamline computation until it reaches the boundary of the vector field. Here, also
the hedgehog of the vector field is displayed scaled by a factor of two.

Figure 4.10: Vorticity vector field of a turbulent flow — hedgehog.
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The third example is a simulation of a swirling jet with an inflow into a steady
medium. The simulation originally resulted in a three dimensional vector field but we
used a cutting plane and projected the vectors onto this plane to get a two dimensional
field. This dataset was provided by Prof. Kollmann from the mechanical engineering
department at the University of California at Davis. In this application one is interested
in investigating the turbulence of the vector field and in regions where the fluid stays
very long. This is necessary because some chemical reactions need a special amount of
time. These regions can be located by finding closed streamlines. Figure 4.10 shows the
hedgehog of that vector field scaled by a factor of two. In figure 4.11 one can see some of
the closed streamlines detected by our algorithm. All these limit cycles are located in the
upper region of the vector field. Additionally figure 4.11 includes the hedgehog where
the arrows representing the vectors are four times longer than the corresponding vector.
Figure 4.12 shows all closed streamlines of this vector field including the topological
skeleton.

To compare our enhancements with usual streamline computation methods, we im-
plemented an algorithm which computes the topological skeleton as described in [HH91].
Therefore we have to determine the singularities. Then we start a streamline at each
saddle point displaced a little bit in positive and negative eigendirection of both eigen-
vectors. Remind that our algorithm does not need any exit conditions other than the
detection of closed streamlines or reaching a singularity or the border of the data!

To get an idea of the computational cost of our method we also implemented a
simple ODE solver to compute the streamlines. The vector field shown in figure 4.10
contains 337 singularities. The algorithm using a simple ODE solver needed 738 seconds
to compute the topological skeleton on a Pentium II 350 MHz. Using our streamline
integration method, which uses the same ODE solver but checks for limit cycles, we
only needed 604 seconds on the same system which is 18 percent faster! The reason for
that is that we do not need to wait until the ODE solver reaches a certain number of
steps if we run into a limit cycle. This saves some time which we can use to check for
limit cycles.

4.4 Limitations

If more than one closed streamline crosses the same cell, the algorithm may fail to detect
these closed streamlines. For instance, there is a structural unstable configuration with
one closed streamline inside the other. One closed streamline acts like a source, lets
say the inner one, while the other one behaves like a sink so that the flow starts at the
first and is attracted by the second one. Since there is an outflow out of the cell the
algorithm cannot distinguish between a regular outflow and this configuration.

Figure 4.13 shows an example for such a configuration. The flow direction inside the
first closed streamline is the same than behind the second one. It looks the same as if
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Figure 4.13: Unstable closed streamlines.

there are no closed streamlines at all. Consequently, the algorithm fails to detect both
closed streamlines.
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Chapter 5

Parallel Detection of Closed
Streamlines

To determine the closed streamlines of a vector field many streamlines have to be com-
puted. In fact, we compute the topological skeleton. This graph leads us to the closed
streamlines. Since the number of streamlines may be large depending on the given vec-
tor field, this may take several minutes or even hours, especially since we also have to
compute even more backward integrated streamlines. Therefore we created a parallel
version of this algorithm to decrease computational time by distributing the streamline
computation to several clients. Some more information on concurrent programming can
be found in the literature [Sch97][Mul93] [Ung97][Aga89).

First, we describe some parallel machines that can be used for our algorithm. Then
two different parallelization methodologies are discussed in the next section. In the end
of this chapter we show the results including different timings on several test systems.

5.1 Parallel Machines

In this section we describe briefly some parallel machines, the Cray/SGI T3E, the IBM
RS/6000 SP, and Linux clusters. The first one uses a distributed shared memory concept
while the other two ones do not share their memory at all.

5.1.1 Cray/SGI T3E

The Cray/SGI T3E is available since 1996. It is a distributed shared memory system
where every node shares its memory with all the others. It uses a virtual address space
to access the memory that is spread among all nodes. The processor used for the nodes is
the DEC Alpha processor 21164. This processor consists of two integer and two floating
point units with IEEE 64 bit arithmetic. It has an eight KB first level and 96 KB second
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level cache directly on the chip.

The GigaRing technology based on the IEEE SCI standard is used to connect the
nodes. Every node is bi-directional connected to its neighbor in a three dimensional
network topology.

5.1.2 IBM RS/6000 SP

The IBM RS/6000 SP uses POWER4 microprocessors. This type of processor has an
SMP-on-a-chip design. It consists of two 1.3 GHz processors including second level
cache directly on one chip. Every node has its own memory. So the parallel program
has to use a message passing system as for instance PVM or MPI.

NO —> -¢ L [
N1 ——> [
N2 a—> [
N3 —> [
N4 —> [
N5 ———P e E—
N6 ——> [
N7 ——» -
N8 a—> -
N9 -— e E—
N10 -—> [
N1l -—> -
N12 a—> [
N13 —> e
N4 a—> [
N15 -—> -¢ L [

Figure 5.1: HPS basic element of an IBM RS/6000 SP for 16 nodes.

Up to sixteen nodes are grouped together in a network configuration as shown in
figure 5.1 using high performance switches (HPS). If more than sixteen nodes are used
several of these groups have to be interconnected.

5.1.3 Linux Clusters

With Linux clusters there are no restrictions concerning network topology, memory, or
CPU speed. Almost every standard PC component can be used in a Linux cluster.
Even several desktop Linux computers that are connected through an Ethernet can be
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called a Linux cluster. But usually the network is the bottleneck in such a system.
Therefore faster network devices like for instance a GigaBit network device or Myrinet
host interface is used. A flat, tree shaped network topology is possible for a Linux
cluster. But especially with a greater number of nodes a network with routes from any
to any other node is desirable to avoid collisions and facilitate faster transfers.

Because of their low prices and the great scalability Linux clusters become more and
more popular. They also appear nowadays in the list of the top 500 Supercomputer
Sites.

5.1.4 Comparison

Cray/SGI T3E | IBM RS/6000 SP | Linux Cluster
Processor type DEC Alpha 21164 | p690 server (dual) e.g. Athlon
Number of processors up to 2176 up to 16 unlimited
Memory size (per node) 512 MB up to 3 GB
Clock speed (per node) up to 675 MHz up to 1.3 GHz up to 2GHz
Network bandwidth 500 MB/s 500 MB/s up to 250 MB/s
Peak Performance 3 TFLOPS 2.6 TFLOPS unlimited

Figure 5.2: Technical specifications of different parallel machines.

The main advantage of Linux clusters is the low price of standard PC components. It
is very extendable because there is no limit in the number of nodes used in the cluster. In
principle, you only have to add a new computer to the network to increase computational
power. The processors are faster than the ones used for both other parallel machines.
The advantage of both, the Cray/SGI T3E and the IBM RS/6000 SP, is the faster
network. Both commercial systems are limited with respect to extendability. Figure 5.2
shows some technical specifications of the three different parallel machines. Altogether,
a Linux cluster is the best way to get a great performance at a low price.

5.2 Parallel Algorithm

To compute the closed streamlines there are two different tasks. First, we have to
compute the critical points in the given vector field. The second task is to compute the
closed streamlines by determining the topological skeleton. The next two subsections
describe these tasks in detail.
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5.2.1 Parallel Computing of Critical Points

To parallelize this algorithm we have to compute all the critical points that are present
in the vector field, first. Since we only need the data of the cells, i.e. the position of
the vertices and the vectors at these vertices, to determine if there exists a critical point
inside the cell and where it is located, we can transfer these tasks to the various clients
of the cluster. When the clients receive the index of a cell they compute the critical
point and return the position and its type, if they have found one, to the server. All
tasks are controlled by a scheduler which is a part of the server.

Server Client
Scheduler

W

get next task

receive task

spool task execute task

[ E] ]

receive resu send result

i1

(

Figure 5.3: Scheduling of the tasks.

The scheduling of the tasks works as follows: the server creates one task for each
cell containing the index of this cell and queues it in the scheduler. The scheduler itself
checks if there are still tasks left and if there is any client that has finished its task yet.
If there is more than one client without an active job, the fastest is chosen. Then the
next task is sent to this client. The client receives this task, computes the critical point
and sends it, if it has found one, back to the server and tells the scheduler that it has
finished its job. Since the amount of data to control the clients and transfer the critical
points back to the server is very low, we can fully benefit from the performance of each
client.

5.2.2 Determining Closed Streamlines in Parallel

According to the motivation there exist two different approaches for parallelization. We
experimented with both approaches to find the best one. There are discussed in detail
in the following.
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Server
| |
Client1 i Client3 ‘ Client|

Figure 5.4: Configuration of the parallel program.

5.2.2.1 Subdivision Approach

In our first approach every client got its data from the server. Computing streamlines is
a global task since it is not known which region of the vector field this streamline may
cross. Therefore it is not possible to simply subdivide the whole dataset into several
regions. If we want to subdivide into several regions we have to restart the streamline
in another task if it leaves such a region. This usually results in a poor load balancing
since it is likely that there are regions that are crossed by only few streamlines. It is
possible to switch regions in a particular task. But again, we do not know if a streamline
crossed exactly that region we just exchanged.

Therefore we tried a different approach where each request to the dataset on one of
the clients results in questioning the server using PVM[GBD'94]. Figure 5.4 shows the
configuration. We use caches to avoid asking the server for the same data repeatedly. But
due to the slow network connection and the long start-up time for communicating under
PVM the transfer of the data took more time than the computation of the streamline
even when we used a GigaBit-connection. As a result the parallel version using such a
subdivision approach uses more time than the sequential version.

5.2.2.2 Task Driven Approach

After we have computed all critical points, we start streamlines at each saddle point in
positive and negative eigendirection with respect to the matrix of the linear interpolant
and check for closed streamlines while computing the streamlines as previously described.
Computing streamlines is not a local task since the streamlines may cross any region
of the flow. Therefore we do not subdivide the data into several blocks like in some
rendering tasks [TAO94]. Our implementation uses an approach where we create several
tasks each of them representing the whole computation of one streamline starting at a
given position. Then we use the scheduler to distribute the tasks to the various clients
of our cluster.

Since the data of the vector field including octree and the program fit into 64 MB
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Server
Dataset Scheduler
Client1 Client2 ‘ Client3‘ Client!

Figure 5.5: Configuration of the parallel program.

of RAM we decided to use a configuration where every client loads the whole dataset
into its own memory. This facilitates the fastest possible access to the data. Since the
server and every client load the data at the same time there is no time lost because
otherwise the clients would simply wait for the server until it has loaded the dataset.
When dealing with larger datasets we have to use an out of core method which will be
done in the future.

Since we want to spread tasks that represent the whole computation of one stream-
line, each task contains two items: a point where the streamline has to start and the
integration direction. The other data that is needed for the computation is already
present at each client because the client has loaded the whole dataset yet. Due to the
minimal amount of data of each task the communication cost which is produced by
migrating tasks is very low.

To distribute the tasks to the various clients we use the previously described sched-
uler: the server determines the start positions of the streamline using each saddle point
found in the vector field. Then a task containing this start position and the integration
direction is created and spooled into the queue of the scheduler, while the scheduler
sends the next job to the fastest client that has no active job. The client receives this
task, searches for closed streamlines and sends it, if it has found one, back to the server.
Again, the amount of data to control the clients and transfer the closed streamlines
back to the server is very low, so that we can fully benefit from the performance of each
client.

5.3 Results

Our algorithm is implemented in C++, while the server communicates with the clients
using PVM[GBD™*94]. The different tasks are encapsulated in C+-+-classes. This fa-
cilitates that the tasks can transfer themselves to the client on demand and the clients
only need to call a method to execute the received task.

To test the performance of our implementation we mainly use two different systems.
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One is a Linux cluster consisting of seven clients. Each node is equipped with an
AMD Duron 600 or AMD Duron 700 processor and 64 MB of RAM. The server is a
multiprocessor computer with two Pentium III 500 processors. The second system is
based on some of our desktop computers with a Pentium II 350. We use Linux and
normal PC components since this is a cheap way to get a great performance compared
to other parallel computers. In order to get a more heterogeneous configuration we mix
both systems by using all Linux computers available in our group for a last performance
test.

As a test dataset we use the same simulated dataset as in the previous chapter. The
vector field has 362 critical points and for the topology including closed streamlines
about six hundred streamlines have to be computed.

Processor Floating-point index
Pentium IT 350 2.404
Pentium III 500 3.561
AMD Athlon 650 5.163
AMD Duron 600 4.768
AMD Duron 700 5.547
Intel Celeron 800 6.125
AMD Thunderbird 1400 11.227

Figure 5.6: Floating-point indices of the different processors.

To determine the optimal timing of our algorithm we used the benchmark utility
nbench® in order to get a suitable ratio between the speeds of the processors. Nbench is
a port to Linux/Unix of release 2 of BYTE Magazine’s BY TEmark benchmark program?.
We computed the floating-point index of each processor which gives the relative speed
of the floating-point unit compared to an AMD K6-233 processor. The results can be
found in figure 5.6. Using these values we computed the floating-point index of the whole
parallel machine by summing up the indices corresponding to the involved processors
and calculated the optimal runtime by neglecting the communication cost between server
and clients.

Figures 5.7 and 5.8 show the timings on the desktop computers. The cluster consists
of up to five machines. The optimal timings are displayed using a dashed line while the
real timings are shown by a solid line. This configuration is very suitable for testing the
scalability of our implementation because every computer has identical performance.
Obviously, the computation time is halved if the number of processors is doubled which
indicates a good scalability of our implementation.

Thttp://www.tux.org/ mayer/linux/bmark.html
2http://www.byte.com/bmark/bmark.htm
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Figure 5.7: Time needed to compute closed streamlines using Pentium PII-350 proces-
sors displayed as graph.

# CPUs | Time | Optimum
1 612s

2 306s 306s

3 205s 204s

4 158s 153s

5 134s 122s

Figure 5.8: Time needed to compute closed streamlines using Pentium PII-350 proces-
sors shown in a table.

The timings of the algorithm running on our Linux cluster with up to seven clients
is displayed in figures 5.9 and 5.10. Again, the optimal timings are displayed using a
dashed line while the real timings are shown by a solid line. Since the server has two
processors there are always running at least two tasks at the same time on this machine.
Adding more clients to the Linux cluster the time needed for the algorithm is reduced
correspondingly to the speed of its processor. Again, we can see that we nearly benefit
from the full performance of each client due to the minimal communication between
server and client as can be seen from the difference between the optimal and the real
timings.

In our next test we also used the Linux desktop machines in all the offices of our
visualization group. This resulted in a parallel machine consisting of six Pentium II-
350, two AMD Athlon 650, one dual processor machine with two Pentium ITI1-500, four
AMD Duron 600, and three AMD Duron 700. Altogether, the algorithm used seventeen
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Figure 5.9: Time needed to compute closed streamlines using a Linux cluster with AMD
Duron 600 and AMD Duron 700 processors displayed as graph.

# CPUs | Time | Optimum
2 224s —
3 138s 134s
4 99s 96s
5) 77s 74s
6 63s 61s
7 93s 50s
8 46s 43s
9 39s 37s
17 28s 24s
30 17s 9s

Figure 5.10: Time needed to compute closed streamlines using a Linux cluster with
AMD Duron 600 and AMD Duron 700 processors shown in a table.

processors and it took 28 seconds to compute all closed streamlines that are present in
our test dataset. As expected, this is faster than using the cluster alone corresponding to
the speed of the processors and slightly slower than the optimal runtime of 24 seconds.
This also tests our implementation in a more heterogeneous parallel machine due to the
different speeds of the processors. It shows that we can decrease the time needed for
the computation by adding more processors no matter what sort of machine it is.
Then we also added the Linux machines in our student rooms for a last test. These
are five machines equipped with an Intel Celeron 800, two machines with a Pentium
IT1-500, and six with an AMD Thunderbird 1400 processor. So we end up with 30
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processors. Our algorithm needed 17 seconds. Compared to the optimal timing of 9
seconds this is a little bit too slow. This is due to the slow network connection. Because
all computers reside in different areas of our working group and several other processes
such as network file system also use this network we do not have the full bandwidth
available. Consequently, the communication cost is not neglectable anymore so that the
real and the optimal timings differ.
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Chapter 6

Closed Streamlines in
Time-Dependent Flows

When dealing with closed streamlines one question occurs: how does a closed streamline
emerge? Inspired by the books of Abraham and Shaw[AS82] [AS83] [AS84] [AS88] we
visualize the evolution of a closed streamline in a planar unsteady flow. We use the third
dimension to represent the time. The evolution of a closed streamline can be shown as
a tube shaped visulization for the closed streamlines in the various timesteps.

The singularities are used as a starting point for our investigations. Therefore we
briefly describe the tracking of the singularities in the next section. This work was done
by Tricoche et al. [TSHO1]. Then we show how to find and follow a closed streamline
over time. In the end we explain the results of our algorithm and explain the limitations
of our method.

6.1 Tracking Critical Points

When dealing with time-dependent two-dimensional flows we can use the third dimen-
sion to represent time as described in subsection 2.2.4. For tracking the closed stream-
lines we first determine the behavior of the critical points. For a given cell, the associated
interpolant contains, for each value of time ¢, a single critical point. This is due to the
affine linear nature inside the triangles of its restriction to any time plane. Letting the
time parameter £ move from ¢; to ¢;,,, the critical point position describes a 3D curve.
A detailed description of how to find the paths of the critical points can be found in the
article of Tricoche et al. [TSHO1].
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Figure 6.1: Closed streamlines found by the algorithm.

6.2 Following Closed Streamlines

After tracking the singularities, we analyze the vector field in discrete timesteps. There
must be a critical point inside each closed streamline. Therefore, we use the critical point
path containing a Hopf bifurcation as a starting point for our streamline algorithm from
section 4.1 which detects the closed streamline if it exists. We follow the critical point
path in discrete steps in positive and negative directions starting at the bifurcation.
After we have found the cell cycle containing the closed streamline we find the exact
position using the Poincaré-map from section 4.2. As a last test we have to check if
the closed streamline really surrounds the critical point. This is necessary because the
streamline may have ran into another closed streamline in a totally different region of the
flow. Obviously, closed streamlines surrounding the critical point occur only in one of
the two temporal directions. We continue by stepping forward in the temporal direction
until the closed streamlines reach either another bifurcation which breaks them up or
the border of the grid.

Figure 6.1 shows the result of this step. Here we have found the closed streamlines
at various timesteps. The closed streamlines are approximated by several line segments.
The paths of the critical points are also shown using the same colors as in the original
paper [TSHO1]. The Hopf bifurcation, where we started to detect the closed stream-
lines, is marked with a yellow sphere. The different bifurcation types are described in
section 2.8. In this example the life cycle of the closed streamline is started by a Hopf
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g,

Figure 6.2: Closed streamlines visualized as a tube over time.

bifurcation and terminated by a Periodic Blue Sky in 2D bifurcation.

To visualize the evolution of closed streamlines, we construct tubes from the various
closed streamlines similar to the pictures by Abraham and Shaw [AS88]. We construct
surfaces consisting of triangles which connect the approximating line segments of the
closed streamlines. The bifurcation point is connected to the tube using a parabolic
surface approximated with triangles. The result is shown in figure 6.2.

6.3 Results

To test our method, we have created a synthetic vector field containing four critical
points. The position of the critical points is a function of time, describing closed curves
in the plane. We have sampled this vector field on a triangular point set for several
values of the time parameter. The rotation of the critical points (each with a specific
frequency) entails many structural changes for the topology. This is very interesting for
our purpose since all different types of bifurcations which create closed streamlines are
present.

Figure 6.3 shows the result of our algorithm, where the closed streamlines are shown
as red tubes. The upper one and the one on the right are started and terminated by Hopf

Department of Computer Science, University of Kaiserslautern, Germany



68 Closed Streamlines in Time-Dependent Flows

Figure 6.3: Closed streamlines found in a synthetic test dataset.

Figure 6.4: Detailed view of a Hopf bifurcation.

bifurcations shown as a yellow sphere  while the lower closed streamline starts at a
Hopf bifurcation and is terminated by a Periodic Blue Sky in 2D bifurcation. Since there
is a critical point inside the cell cycle, i.e. the saddle, the flow behaves totally different
depending on where a streamline passes the saddle. Therefore the exact localization
fails when we are too close to the critical point.

Figures 6.4 and 6.5 show some detailed views of the different bifurcations. Also some
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Figure 6.5: Detailed view of a Periodic Blue Sky in 2D bifurcation.

streamlines are drawn to show how these streamlines circle around the limit cycle but
never cross it. Figure 6.4 is a closed streamline started by a Hopf bifurcation. The
bifurcation is located in the lower left corner. In figure 6.5 the closed streamline is
started by a Hopf bifurcation located in the upper left corner. It grows in size until it is
terminated by a Periodic Blue Sky in 2D bifurcation. Consequently, the tube visualizing
the evolution of the closed streamline does not get closed.

Another dataset we used is a simulation of a swirling jet with an inflow into a steady
medium. The simulation uses a cylindrical domain and assumes rotational symmetry, so
that we are left with a two-dimensional vector field on a plane through the center axis of
the cylinder. In this application one is interested in investigating the turbulence of the
vector field and in regions where the fluid stays very long. Swirling jets play a significant
role in many combustion processes. It is important to find such recirculation regions
indicated by closed instantaneous streamlines. To avoid visual clutter we use only a
part of the dataset for our visualization. Figure 6.6 shows the result of our algorithm.
The critical point paths are also shown where saddles are colored red, sinks are green,
and sources are visualized using blue color. Obviously, in regions where only one saddle
point is involved, we cannot find any closed streamline due to the types of bifurcations
explained in section 2.8. Most of the closed streamlines emerge at Hopf bifurcations
which are marked with a yellow sphere. Therefore, closed streamlines are found where
sources and sinks alternate while time propagates, so that we are able to identify the
regions where the fluid stays very long.
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\

Figure 6.6: Closed streamlines found in a vorticity dataset.

6.4 Limitations

Due to the unstable configuration of the homoclinic connections of the periodic blue
sky in 2D bifurcation we actually fail to reach the bifurcation exactly. Our implementa-
tion terminates the tube representing the closed streamline slightly too early. Another
missing feature in this implementation is to find several closed streamlines around one
critical point. This can be accomplished by continuing the integration process. The
time slice has to be checked for closed streamlines again near the last limit cycle that
was found.
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Chapter 7

Closed Streamlines in 3D Vector
Fields

Closed streamlines can be found in three dimensional vector fields also. For instance,
the Terrestrial Planet Finder Mission of NASA deals with stable manifolds where 3D
periodic halo orbits play an important role. These orbits are nothing else than closed
streamlines in a three dimensional vector field. Figure 7.1 shows an example.

Figure 7.1: Terrestrial Planet Finder Mission (image courtesy of Ken Museth,
Caltech MBLO1]).

The next section describes how to detect closed streamlines in three dimensional
vector fields. It shows the differences between the two dimensional case both in theory
and the algorithm itself. In the end we present the results of the algorithm.
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Figure 7.2: Backward integrated surface.

7.1 Detecting Closed Streamlines in 3D Vector
Fields

Although the principle to detect closed streamlines in a three dimensional vector field
is similar to the two dimensional case there are some differences. We will describe the
theoretical and algorithmic differences and similarities in the next two subsections.

7.1.1 Theory

The data is given on a tetrahedral grid. But the principle should work on other cell
types as well. The detection of a cell cycle works the same as in definition 4.1.2. Of
course, the cells are three dimensional in this case. To check if we can leave the cell
cycle we have to consider every backward integrated streamline starting at an arbitrary
point on a face of the boundary of the cell cycle. Looking at the edges of a face we can
see directly that it is not sufficient to just integrate streamlines backwards. Figure 7.2
shows an example. We integrated a streamsurface backwards starting at an edge of
the cell cycle. The streamlines starting at the vertices of that edge leave the cell cycle
earlier than the complete surface. So it may be possible that a part of the streamsurface
stays inside the cell cycle although the backward integrated streamlines starting at the
vertices leave it. Consequently, we have to find another definition for exits.
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Definition 7.1.1 (Potential Exit Edges)

Let C be a cell cycle in a given tetrahedral grid G as in Definition 4.1.2. Then we call
every edge at the boundary of the cell cycle a potential exit edge. Analogue to the two
dimensional case we define a line on a boundary face where the vector field is tangential
to the face as a potential exit edge also.

Due to the fact that we use linear interpolation inside the tetrahedrons we can show
that there will be at least a straight line on the face where the vector field is tangential
to the face or the whole face is tangential to the vector field.

Theorem 7.1.2

Let F be a triangular face of a tetrahedral. The vectors vy, ve, and vs are the vector
values and p1, po, and p3 the positions of the vertices of the face F'. The vectors inside
the tetrahedron are interpolated linearly. Then all vectors that are tangential to the face
are on a straight line or all vectors inside the face are tangential.

Proof:

Let v, v9, v3, p1, P2, and p3 the vectors of respectively positions at the vertices of the
face F'. Let n be an orthogonal vector to the face F'. We can interpolate a vector inside
the face F' by using the barycentric coordinates:

v=a-v+0-v+ 73
Every vector that is tangential to the face F' is orthogonal to the vector n. Therefore:
n-v=an-vy+ pn-vy+yn-uvs3
A property of the barycentric coordinates is that they sum up to 1:
a+pB+vy=1

So we have two equations and three variables. This leads to an at least one dimensional
solution of linear equations if there is any solution. 0

Remark 7.1.3
Because of theorem 7.1.2 we do not need to consider any isolated point on a face where
the vector field is tangential to the face because this cannot occur.

When dealing with edges as exits we have to compute a streamsurface instead of
streamlines to consider every point on an exit edge. This leads us to the following
notation.

Notation 7.1.4 (Backward integrated streamsurface)

We use the term backward integrated streamsurface to describe the streamsurface
we integrate by inverting the vectors of the vector field starting at a potential exit edge
in order to validate this exit edge.
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Analogue to definition 4.1.5 we define real exit edges.

Definition 7.1.5 (Real exit edge)

Let E be a potential exit edge of a given cell cycle C' as in definition 7.1.1. If the
backward integrated streamsurface does not completely leave the cell cycle after one full
turn through C then this edge is called a real exit edge.

For the backward integrated streamsurface we use a simplified version of the stream-
surface algorithm introduced by Hultquist [Hul92]. Since we do not need a triangulation
of the surface we only have to process the integration step of that algorithm. Initially,
we start the backward integration at the vertices of the edge. If the distance between
these two backward integrations is greater than a special error limit we start a new
backward integration in between. This continues with the two neighboring integration
processes until we have created an approximation of the streamsurface that respects the
given error limit.

Figure 7.3: Backward integration in one cell.

The integration stops if the whole streamsurface leaves the cell cycle or if we have
completed one full turn through the cell cycle. But to construct the surface properly
we may have to continue a backward integration process across the boundary of the cell
cycle. This is due to the fact that some part of the streamsurface is still inside the cell
but the backward integrated streamline has already left it. Figure 7.3 shows a simplified
example. Both streamlines at the left and right edge of the surface leave the cell, in fact
they leave right after they started. But the integration process must be continued until
the whole surface, created inside the cell by these two streamlines, leaves the cell.
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With these definitions and motivations we can formulate the main theorem for our
algorithm:

Theorem 7.1.6

Let C be a cell cycle as in definition 4.1.2 with no singularity inside and FE the set of
potential exit edges. If there is no real exit edge among the potential exit edges FE or
there are no potential exit edges at all then there exists a closed streamline inside the
cell cycle.

Proof: (Sketch)

Let C' be a cell cycle with no real exit edges. Every backward integrated streamsurface
leaves the cell cycle C' completely. As in the 2D case it is obvious that we cannot leave
the cell cycle if every backward integration starting at an arbitrary point on a face of
the boundary of the cell cycle C leaves the cell cycle. So we have to prove that the
actually integrated streamline cannot leave the cell cycle C.

We look at each face of the boundary of the cell cycle C. Let ) be an arbitrary
point on a face F' of the boundary of the cell cycle C'. Let us assume that the backward
integrated streamline starting at () converges to the actually investigated streamline.
We have to show that this is a contradiction.

First case:  The edges of face F' are exit edges and there is no point on F' where the
vector field is tangential to F'.

From a topological point of view the streamsurfaces starting at all edges
of F' build a tube and leave the cell cycle. Since the backward integrated
streamline starting at () converges to the actually investigated streamline
it does not leave the cell cycle. Consequently, it has to cross the tube
built by the streamsurfaces. This contradicts theorem 2.1.8 because
streamlines cannot cross each other and therefore a streamline cannot
cross a streamsurface.

Second case: There is a potential exit edge e on the face F' that is not a part of the
boundary of F'.

Obviously, the potential exit edge e divides the face F' into two parts. In
one part there is outflow out of the cell cycle C' while at the other part
there is inflow into C'. We do not need to consider the part with outflow
any further because every backward integrated streamline starting at a
point of that part immediately leaves the cell cycle C.

The backward integrated surface starting at the potential exit edge e and
parts of the backward integrated streamsurfaces starting at the boundary
edges of the face F' build a tube again from a topological point of view.
Consequently, the backward integrated streamline starting at () has to
leave the cell cycle C.
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We have shown that the backward integrated streamline starting at the point () has
to leave the cell cycle also. Since there is no backward integrated streamline converging
to the actually investigated streamline at all, the streamline will never leave the cell

cycle. U

7.1.2 Algorithm

With theorem 7.1.6 we are able to describe our algorithm in detail. It is quite similar
to the two dimensional case and mainly consists of three different states:

[J streamline integration: identifying one cell change after the other, check at each
cell if we reached a cell cycle.

[ checking for exits: going backwards through the crossed cells and looking for
potential exit edges.

[ validating exit: integrating backwards a streamsurface from potential exit edges
through the whole cell cycle.

Figure 7.4: Closed streamline including cell cycle and backward integrations.
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Figure 7.4 shows an example of our backward integration step. There, also the closed
streamline and the cell cycle is shown. Every backward integrated streamsurface leaves
the cell cycle. According to theorem 7.1.6, there exists a closed streamline inside this
cell cycle. Then we can find the exact location by continuing the integration process of
the streamline that we actually investigate until the difference between two successive

turns is small enough. This numerical criterion is sufficient in this case since we have
shown that the streamline will never leave the cell cycle.

7.2 Results
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Figure 7.5: Symmetric two dimensional vector field.

To test our implementation we created a synthetic dataset which includes one closed
streamline. We first produced a two dimensional vector field. Figure 7.5 shows this
vector field. To get an idea of the structure a hedgehog visualization is included. The
vector field contains a saddle singularity in the center and two symmetrical sinks. The
topological skeleton is shown also. To get a three dimensional flow we rotated the two
dimensional vector field around the y-axis. Due to the symmetrical arrangement of the
sinks this vector field includes exactly one closed streamline. Figure 7.6 shows the result
of our algorithm. To visualize a little bit of the surrounding flow several streamlines are
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Figure 7.6: Closed streamline in a three dimensional vector field.

drawn. Obviously, every streamline is attracted by the closed streamline. After a short
while the streamline spirals around the closed streamline until it completely merges into
it. We can see in this example that the closed streamline in this three dimensional flow
acts like a sink.

Figure 7.7 shows the same closed streamline with two streamsurfaces. The stream-
surfaces are — just like the streamlines — attracted by the closed streamline. The stream-
surface gets smaller and smaller while it spirals around the closed streamline. After a
few turns around the closed streamline it is only slightly wider then a streamline and
finally it totally merges with the closed streamline. We used a rather arbitrary color
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Figure 7.7: Limit cycle in a 3D vector field with streamsurfaces.

scheme for the surface to enhance the three dimensional impression. Both figures 7.6
and 7.7 indicate the potential of this algorithm.
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