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Closed Streamlines in Flo w Visualization vii

Abstract

V ector �elds o ccur in man y of the problems in science and engineering. In com bustion

pro cesses, for instance, v ector �elds describ e the 
o w of the gas. This pro cess can b e

enhanced using v ector �eld visualization tec hniques. Also, wind tunnel exp erimen ts can

b e analyzed. An example is the design of an air wing. The wing can b e optimized to

create a smo other 
o w around it. V ector �eld visualization metho ds help the engineer

to detect critical features of the 
o w. Consequen tly , feature detection metho ds gained

great imp ortance during the last y ears.

T op ological metho ds are often used to visualize v ector �elds b ecause they clearly

depict the structure of the v ector �eld. In previous publications ab out top ological

metho ds closed streamlines are neglected. Since closed streamlines can b eha v e in exactly

the same w a y as sources and sinks they are an imp ortan t feature that cannot b e ignored

an ymore.

T o accomplish this, this w ork concen trates on detecting this top ological feature. W e

in tro duce a new algorithm that �nds closed streamlines in v ector �elds that are giv en

on a grid where the v ectors are in terp olated linearly . W e iden tify regions that cannot

b e left b y a streamline. According to the P oincar � e-Bendixson theorem there is a closed

streamline in suc h a region if it do es not con tain an y critical p oin t. Then w e iden tify

the exact lo cation using the P oincar � e map. In con trast to other algorithms, this metho d

do es not presume the existence of a closed streamline. Consequen tly , this algorithm is

able to really detect closed streamlines inside the v ector �eld. A parallel v ersion of this

algorithm is also describ ed to reduce computational time. The implemen tation scales

recipro cally prop ortional to the CPU sp eed of the used computers.

In order to get a b etter understanding of closed streamlines w e sk etc h the whole

ev olution of a closed streamline in time dep enden t 
o ws. This results in a tub e shap ed

visualization represen ting the closed streamline o v er time. The emerging and v anishing

of the closed streamline can b e easily in v estigated to get more insigh t in to this feature.

In com bustion pro cesses closed streamlines in a three dimensional 
o w are a hin t for

recirculation zones. These zones describ e regions inside the 
o w where the gas sta ys

quite long. This is necessary for the gas to completely burn. Therefore, w e also sho w

ho w to detect this imp ortan t feature in three dimensional v ector �elds.
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Kurzfassung

V ektorfelder treten im Zusammenhang mit sehr vielen wissensc haftlic hen und inge-

nieurm• a�igen Problemen auf. Bei V erbrenn ungsv org• angen b eispielsw eise b esc hreib en

V ektorfelder den V erlauf des einstr• omenden Gases. Dieser V organg k ann mit Hilfe v on

T ec hnik en der V ektorfeldvisualisierung v erb essert w erden. Eb enso lassen sic h Wind-

k analexp erimen te analysieren. Als Beispiel sei das Design einer T rag
• ac he genann t. Der

Fl • ugel k ann optimiert w erden, um eine b essere Umstr• om ung zu erreic hen. Metho den

der V ektorfeldvisualisierung helfen dem Ingenieur, kritisc he Eigensc haften der Str• om ung

zu erk ennen. Demen tsprec hend erlangten Metho den, die Merkmale der Str• om ung

aufzeigen, in den letzten Jahren immer gr• o�ere Bedeutung.

T op ologisc he Metho den w erden h• au�g eingesetzt, um V ektorfelder zu visualisieren,

da sie sehr deutlic h die Struktur des V ektorfeldes aufzeigen. In fr • uheren V er• o�en tlic h un-

gen •ub er top ologisc he Metho den wurden gesc hlossene Stromlinien bisher v ernac hl• assigt.

Da gesc hlossene Stromlinien sic h jedo c h genauso v erhalten k• onnen wie Quellen und

Senk en, stellen sie ein wic h tiges Merkmal dar, das nic h t w eiter ignoriert w erden k ann.

Um diesen Mangel zu b eseitigen, b efasst sic h die Arb eit mit dem Au�nden dieser

top ologisc hen Eigensc haft. Es wird ein neuartiger Algorithm us v orgestellt, der in der

Lage ist, gesc hlossene Stromlinien in V ektorfeldern, die auf einem Gitter de�niert sind

und linear in terp oliert w erden, zu �nden. Dazu wird nac h Bereic hen gesuc h t, die v on

einer Stromlinie nic h t mehr v erlassen w erden k• onnen. Gem• a� dem P oincar � e-Bendixson-

Theorem b e�ndet sic h eine gesc hlossene Stromlinie in diesem Bereic h, falls er k eine

kritisc hen Punkte en th• alt. Ansc hlie�end wird die genaue P osition mit Hilfe der P oincar � e-

Abbildung b estimm t. Im Gegensatz zu anderen Algorithmen setzt diese Metho de nic h t

die Existenz einer gesc hlossenen Stromlinie v oraus. Daher ist das hier v orgestellte V er-

fahren in der Lage, gesc hlossene Stromlinien auc h tats• ac hlic h aufzu�nden. Eine P aral-

lelisierung dieses Algorithm us wird eb enfalls b esc hrieb en, um die b en• otigte Rec henzeit

zu reduzieren. Die Laufzeit der Implemen tation ist dab ei umgek ehrt prop ortional zur

CPU-Gesc h windigk eit der v erw endeten Computer.

Um ein b esseres V erst• andnis f • ur gesc hlossene Stromlinien zu b ek ommen, wird der

gesam te Leb enszyklus gesc hlossener Stromlinien in zeitabh• angigen V ektorfeldern aufge-

zeigt. Dies resultiert in einer r• ohrenf• ormigen Darstellung, die gesc hlossene Stromlinien

•ub er die Zeit repr• asen tiert. Die En tsteh ung und das V ersc h winden der gesc hlossenen

Stromlinie k ann einfac h un tersuc h t w erden, um mehr Ein blic k in dieses Merkmal zu

erhalten.

Bei V erbrenn ungsv org• angen sind gesc hlossene Stromlinien in dreidimensionalen

Str• om ungen ein Indiz f • ur Rezirkulationsb ereic he. Diese Bereic he b esc hreib en Regionen

innerhalb der Str• om ung, in denen sic h das Gas relativ lange aufh• alt. Dies ist not w endig,

damit das Gas v ollst• andig v erbrennen k ann. Aus diesem Grund wird zudem aufgezeigt,

wie dieses wic h tige Merkmal in dreidimensionalen V ektorfeldern gefunden w erden k ann.
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Chapter 1

In tro duction

Man y of the problems in natural science and engineering in v olv e v ector �elds. Fluid


o ws, electric and magnetic �elds are nearly ev erywhere, therefore measuremen ts and

sim ulations of v ector �elds are increasing dramatically . As with other data, analysis is

m uc h slo w er and still needs impro v emen t. Mathematical metho ds together with visu-

alization can pro vide help in this situation. In most cases, the scien tist or engineer is

in terested in in tegral curv es of the v ector �eld lik e streamlines in 
uid 
o ws or mag-

netic �eld lines. The qualitativ e nature of these curv es can b e studied with top ological

metho ds dev elop ed originally for dynamical systems. Esp ecially in the area of 
uid

mec hanics, top ological analysis and visualization ha v e b een used with success [GLL91 ],

[HH91], [Ken98], [SHJK00].

In visualization, top ological metho ds mostly are not able to precisely sho w the exis-

tence of closed streamlines. Only stopping criteria lik e elapsed time, n um b er of in tegra-

tion steps or the length of the streamline are used to prev en t the algorithm from running

forev er. But closed streamlines pla y an imp ortan t role in top ological metho ds b ecause

they can act in the same w a y as sources or sinks; they can attract or rep el the 
o w.

Therefore there is a strong need for an algorithm that is able to detect this imp ortan t

top ological feature.

Figure 1.1 sho ws an example of a closed streamline. The streamline is started in the

cen ter of the �gure. After a short while the in tegrated streamline ends up in a lo op so

that the streamline cycles around and around. Consequen tly , the computation normally

w ould not terminate without detecting this situation or using an imprecise stopping

criterion lik e the ones men tioned b efore. The disadv an tage with these imprecise stopping

criteria is that w e cannot distinguish b et w een a streamline that spirals v ery slo wly and

a streamline that runs in to a closed streamline. Therefore, the streamline is stopp ed

to early in some cases. If w e w ere able to really detect whether w e end up in a closed

streamline or not w e can compute the whole streamline. In this case w e additionally

accelerate the in tegration pro cess b ecause w e do not cycle around the closed streamline

an ymore un til the stopping criterion is ful�lled.
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2 In tro duction

Figure 1.1: A closed streamline.

There are sev eral applications for an algorithm that detects closed streamlines. In

com bustion pro cesses, a sp ecial amoun t of time is necessary for the gas to burn com-

pletely . If w e ha v e a swirling jet where the gas is injected w e ha v e an in
o w in to a steady

medium. Consequen tly , w e get regions with high turbulence in the resulting 
o w. T o

lo cate areas where the gas sta ys v ery long w e can use the closed streamlines in the 
o w

indicating those areas whic h are called recirculation zones [Hai99 ].

T o illustrate the situation w e computed a visualization of a sim ulated in
o w in to

a swirling jet. Figure 1.2 depicts the result. The 
o w is sho wn b y a LIC image

[CL93][SH95][HS98]. This metho d distorts a white noise image b y smearing in the

direction of the 
o w. The in
o w can b e clearly iden ti�ed in the middle of the picture.

The turbulen t areas at the top and the b ottom are emphasized also. Sev eral closed

streamlines can b e found in these regions of the v ector �eld dra wn in white. Conse-

quen tly , man y recirculation zones can b e iden ti�ed b y this metho d where c hances are

go o d that the gas is able to completely burn.

Another application is the searc h for the ey e of h urricanes [WFL

+

00]. A h urricane

consists of mainly t w o regions: the outer region where it has a great and destructiv e

p o w er with a circulating 
o w and the inner area where almost nothing happ ens. If w e

pro ject the 
o w that describ es the h urricane on to a horizon tal plane these t w o regions

are divided b y a closed streamline. T o lo cate this b oundary w e only ha v e to compute

the closed streamline of that v ector �eld. As a result w e ha v e iden ti�ed the ey e of the

h urricane.

After describing the theoretical bac kground in the second c hapter whic h is necessary

for the understanding of the new algorithms that are describ ed in this thesis, w e explain

the algorithm for detecting closed streamlines in a t w o dimensional v ector �eld in the

third c hapter. This algorithm c hec ks during the in tegration pro cess if the streamline

reac hes an area that cannot b e left. In suc h a case, w e ha v e pro v en according to the
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Closed Streamlines in Flo w Visualization 3

Figure 1.2: Recirculation zones in a swirling jet sim ulation.

P oincar � e-Bendixson theorem that there exists a closed streamline in that area. T o lo cate

the exact p osition of this closed streamline the P oincar � e map is used.

Since it is necessary to compute man y streamlines to �nd ev ery closed streamline in a

giv en dataset, w e sho w a parallelization of our algorithm that detects closed streamlines

in c hapter four. The streamlines that ha v e to b e computed are spread as di�eren t tasks

to the v arious clien ts in a Lin ux cluster. If a closed streamline is detected the clien t sends

bac k a visualization of that closed streamline to the serv er. The serv er displa ys all these

closed streamlines. This facilitates a faster computation of all closed streamlines. The

acceleration corresp onds to the o v erall computation p o w er of the whole Lin ux cluster.

Inspired b y the b o oks of Abraham and Sha w [AS82][AS83][AS84][AS88] w e in v es-

tigate the creation or v anishing of closed streamlines in c hapter �v e. A v ector �eld

is in terp olated o v er time so that closed streamlines can emerge in sp ecial situations.
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4 In tro duction

These situations are called bifurcations. The closed streamlines are follo w ed o v er time.

This results in a tub e shap ed visualization that clearly sho ws the ev olution of the whole

closed streamline.

W e also w an t to detect closed streamlines in a three dimensional v ector �eld. Al-

though the principle is quite similar to the t w o dimensional case there exist some essen tial

di�erences. The test if a streamline is able to lea v e a region is far more di�cult in the

three dimensional case. This is describ ed in detail in c hapter sev en.
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Closed Streamlines in Flo w Visualization 5

Chapter 2

Theory of V ector Fields

This c hapter in tro duces the fundamen tal theory whic h is needed for the follo wing c hap-

ters. W e mainly follo w the description of Hirsc h and Smale [HS74]. Other descriptions

can b e found in [T ri02 ][GH83][Guc00 ].

2.1 F undamen tal Theory

In order to talk ab out v ector �elds w e need a precise de�nition of what a v ector �eld

actual is.

De�nition 2.1.1 (V e ctor �eld)

L et W � R

n

b e an op en subset. A n n-dimensional ve ctor �eld v is de�ne d as a map

v : W ! R

n

:

As w e can see from de�nition 2.1.1 a v ector �eld giv es us an n-dimensional v ector at

an arbitrary p osition inside W . V ector �elds o ccur in man y applications. F or instance,

w e ma y ha v e a 
o w in a wind tunnel exp erimen t. This 
o w can b e describ ed b y a

dynamic al system . If w e ha v e a massless particle lo cated at a p osition x inside the


o w, a dynamical system tells us where this particle is after a giv en time t . Therefore

a dynamical system should b e con tin uously di�eren tiable or at least con tin uous and

con tin uously di�eren tiable in t .

De�nition 2.1.2 (Dynamic al system)

L et W � R

n

b e an op en subset. A dynamic al system or 
ow is a C

1

map R � W

�

!

W , wher e � ful�l ls the fol lowing c onditions:

1. � (0) is the identity

2. � ( t ) � � ( s ) = � ( t + s ) for al l t; s 2 R
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6 Theory of V ector Fields

We also write � ( t; x ) = �

t

( x ) .

There is a direct coherence b et w een a dynamical system and a v ector �eld sho wn b y

the next remark.

R emark 2.1.3

L et W � R

n

b e an op en subset and � a dynamic al system. Then ther e exists a ve ctor

�eld v : W 7! R

n

that satis�es

v ( x ) =

d

dt

�

t

( x )

�

�

t =0

:

Th us, if x

0

2 W , v ( x

0

) is the tangen t v ector to the curv e de�ned b y t ! �

t

( x

0

) at

t = 0. F rom another p oin t of view w e can start with a giv en v ector �eld v . With a giv en

p oin t x

0

2 W , this leads us to the Cauchy pr oblem .

De�nition 2.1.4 (Cauchy pr oblem)

L et v b e a ve ctor �eld as in de�nition 2.1.1 and x

0

2 W an arbitr ary p oint. Then the

Cauchy pr oblem is de�ne d by the di�er ential e quation

d

dt

x ( t ) = v ( x ( t ))

with the so c al le d initial c ondition x (0) = x

0

.

Then the dynamical system � satisfying the equation in remark 2.1.3 giv es us the

solution curve x ( t ) = �

t

( x ) for the Cauc h y problem.

R emark 2.1.5

The solution curve is also r eferr e d to as a str e amline , an inte gr al curve , a tr aje c-

tory , or an orbit .

v(x )

x(t)
x  = x(t )0

0

0

Figure 2.1: A solution curv e is alw a ys tangen tial to the de�ning v ector �eld.
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Closed Streamlines in Flo w Visualization 7

F rom a geometrical p oin t of view the tra jectory x ( t ) is a curv e whic h is alw a ys

tangen tial to the v ector �eld v . This means that

d

dt

x ( t ) equals v ( x ( t )) as sho wn in

�gure 2.1. F or ev ery p oin t x

0

2 W there exists a unique solution curv e whic h is sho wn

b y the next theorem. But w e need a short de�nition �rst.

De�nition 2.1.6 (Lipschitz)

L et W � R

n

b e an op en subset. L et further v : W ! R

n

b e a ve ctor �eld as in

de�nition 2.1.1. The ve ctor �eld v is said to b e Lipschitz on W if ther e exists a

c onstant K such that

j v ( x ) � v ( y ) j � K j x � y j

for al l x; y 2 W . The c onstant K is c al le d Lipschitz c onstant for v .

The or em 2.1.7 (Existenc e and uniqueness)

L et v b e a ve ctor �eld as in de�nition 2.1.1 which is Lipschitz and x

0

2 W an arbitr ary

p oint. Then ther e exists an a > 0 and a unique solution

x : ( � a; a ) ! W

of the Cauchy pr oblem that satis�es the initial c ondition x (0) = x

0

.

Pr o of:

See [HS74], pages 162 through 167. o

It follo ws directly from this theorem that streamlines cannot cross eac h other due to

the uniqueness of solution curv es.

Cor ol lary 2.1.8 (Cr ossing str e amlines)

L et v b e a ve ctor �eld as in de�nition 2.1.1 and x

0

; y

0

2 W two arbitr ary p oints with

x

0

6= y

0

. L et further x ( t ) and y ( t ) b e the solution curves with initial c onditions x (0) = x

0

r esp e ctively y (0) = y

0

. Unless these two solution curves ar e not identic al they do not

interse ct.

Pr o of:

Let x and y b e t w o in tersecting streamlines whic h are not iden tical. Let further p 2 W

b e the in tersection p oin t. Then there exist t

1

; t

2

2 R with x ( t

1

) = y ( t

2

) = p . Then there

are t w o streamlines starting at p oin t p whic h con tradicts to theorem 2.1.7. o

This corollary is of great imp ortance since it sho ws that t w o di�eren t streamlines

will nev er in tersect. This feature will b e exploited b y our algorithm that detects closed

streamlines.

De�nition 2.1.9 (Phase p ortr ait)

L et v b e a ve ctor �eld as in de�nition 2.1.1 and � the dynamic al system asso ciate d to v .

Then the family of al l solution curves r epr esents the phase p ortr ait of the dynamic al

system � .
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8 Theory of V ector Fields

It is also p ossible to in v estigate v ector �elds o v er time. Therefore w e de�ne time

dep enden t v ector �elds.

De�nition 2.1.10 (Time dep endent ve ctor �eld)

L et W � R

n

b e an op en subset. A n n-dimensional time dep endent ve ctor �eld v

is de�ne d as a map

v : R � W ! R

n

( t; x ) 7! v ( x )

wher e t is the time p ar ameter.

2.2 Data Structures

In most applications in Scien ti�c Visualization the data is not giv en as a closed form

solution. The same holds for v ector �elds. Usually , the v ector �elds result from a

sim ulation or an exp erimen t where the v ectors are measured. In suc h a case, the v ectors

are giv en at only some p oin ts of the domain of the Euclidean space. These p oin ts are

then connected b y a grid. A sp ecial in terp olation computes the v ectors inside eac h cell

of the grid. In this c hapter w e restrict ourselv es to the few t yp es of grids that w e used

in our algorithms in this section.

2.2.1 T riangular Grids

Figure 2.2: T riangular grid.

A v ery p opular t w o dimensional grid t yp e is the triangular grid. Figure 2.2 sho ws

an example for suc h a grid. This grid t yp e facilitates to connect an arbitrary p oin t set.

T o get the v ectors inside a cell w e use an in terp olation sc heme based on barycen tric
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p

p

p

b

b
1-b

b

2

1

0

0

1 2

1-b

p1-b2
1

0

Figure 2.3: Barycen tric co ordinates.

co ordinates. Figure 2.3 explains the con�guration. Let p b e the p oin t where w e w an t

to in terp olate the v ector and p

0

, p

1

, and p

2

are the v ertices of the triangle.

The barycen tric co ordinates b

0

, b

1

, and b

2

describ e the distances b et w een the p oin t

p

i

and the edge whic h is opp osite to the v ertex with the same index. F or the barycen tric

co ordinates the equation

P

2

i =0

b

i

= 1 holds. The p oin t p can b e expressed in the

follo wing w a y:

p =

2

X

i =0

b

i

� p

i

:

Let v ( p

i

) b e the v ectors at the v ertices of the triangle. Then w e can in terp olate the

v ector v ( p ) at the p oin t p in the same w a y:

v ( p ) =

2

X

i =0

b

i

� v ( p

i

) :

T o compute the zeros inside the triangle w e need to solv e the follo wing linear equa-

tion:

2

X

i =0

b

i

� v ( p

i

) = 0 :

Unless this system is degenerated, the solution is unique. Consequen tly , w e get at most

one zero dep ending on whether the solution p oin t lies inside the triangle or not.
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10 Theory of V ector Fields

2.2.2 Quadrilateral Grids

(a) Rectilinear grid. (b) Curvilinear grid.

Figure 2.4: Quadrilateral grids.

There exist t w o di�eren t t yp es of quadrilateral grids. The �rst one is the rectilinear

grid. There ev ery cell is a rectangle. The edges of the cells are orthogonal as sho wn

in �gure 2.4a. The other t yp e is the curvilinear grid. Here the b oundary b et w een the

cells is a curv e consisting of p oin ts connected b y straigh t lines. The b oundary of more

than one cell do es not need to b e a straigh t line an ymore as can b e seen in �gure 2.4b.

If w e in terp olate in suc h a cell w e need to map it to a rectangular cell. This map � is

not linear. Often one sp eaks of mapping from ph ysical space in to computational space.

Usually , a n umerical metho d is used to do this mapping. Consequen tly , w e can restrict

ourselv es to the rectangular case when explaining in terp olation in this case.

p

pp

p

ps

r

2

0 1

3

Figure 2.5: Lo cal co ordinates inside a rectangle.

W e in terp olate bilinearly inside eac h cell. Therefore, w e in tro duce lo cal co ordinates

( r ; s ) with 0 � s; r � 1 inside the cell of the p oin t p where w e w an t to in terp olate.
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Figure 2.5 explains ho w this w orks. The v ertex p

0

has lo cal co ordinates (0 ; 0), the

v ertex p

1

the co ordinates (1 ; 0), the v ertex p

2

corresp onds to (1 ; 1), while the last v ertex

p

3

is lo cated at (0 ; 1). Then w e can use the follo wing form ula for the in terp olation:

v ( p ) = (1 � r )(1 � s ) � v ( p

0

) + r (1 � s ) � v ( p

1

) + r s � v ( p

2

) + (1 � r ) s � v ( p

3

) :

2.2.3 T etrahedral Grids

Figure 2.6: T etrahedron.

A tetrahedral grid consists of sev eral tetrahedrons as sho wn in �gure 2.6. Conse-

quen tly , a tetrahedral grid is a three dimensional grid. As with triangular grids an

arbitrary p oin t set can b e connected using this grid t yp e. The in terp olation sc heme

w orks in an analogue w a y as the triangular case using barycen tric co ordinates. Con-

sequen tly , there is at most one zero inside eac h tetrahedron, also, if the in terp olating

v ector �eld is non-degenerate inside that tetrahedron.

2.2.4 Time dep enden t Data with Prism Cells

When dealing with time-dep enden t t w o-dimensional 
o ws w e can use the third dimen-

sion to represen t time. W e assume the v ector �eld is giv en at time slices on a triangular

grid. These time slices v

i

: W ! R

2

are connected using prism cells as sho wn in

�gure 2.7. T o in terp olate the v ectors w e consider the follo wing map

f : R � W � ! R � R

2

( t; x ) 7! v ( t; x )

where W is the domain represen ted b y the t w o dimensional grid of the time slices. Since

w e need consistency with the piecewise a�ne linear in terp olation that w ould b e applied

on a 2D triangulation, w e ha v e to ensure that the restriction of the 3D in terp olan t

to eac h time plane is piecewise a�ne linear, to o. That means that, �xing the time
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Figure 2.7: Time prism cell.

co ordinate and taking it as a parameter, the in terp olan t m ust b e a�ne linear. This is

the reason wh y w e c ho ose the follo wing in terp olan t inside eac h prism cell.

F or a giv en prism cell lying b et w een t

i

and t

i +1

, let v

j

( x ) = A

j

x + b

j

, j 2 f i; i + 1 g

b e the linear in terp olation corresp onding to the prism triangle faces lying in the planes

f t = t

i

g and f t = t

i +1

g resp ectiv ely . Then w e de�ne the in terp olan t o v er the whole

prism cell b y linear in terp olation o v er time:

v ( t; x ) =

t

i +1

� t

t

i +1

� t

i

v

i

( x ) +

t � t

i

t

i +1

� t

i

v

i +1

( x )

where t 2 [ t

i

; t

i +1

]. This form ula ob viously ensures, for eac h �xed v alue of t , that v ( x; t )

is a�ne linear in x .

2.3 Critical P oin ts

Critical p oin ts are from a top ological p oin t of view an imp ortan t part of v ector �elds.

This sp ecial feature is describ ed in more detail in this section. W e �rst explain the

general case and then study the linear case.

2.3.1 General Case

W e start with the de�nition of critical p oin ts in the general case. Then w e classify

di�eren t t yp es of singularities and talk ab out stabilit y whic h is necessary to ac hiev e a
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Closed Streamlines in Flo w Visualization 13

meaningful ph ysical in terpretation of v ector �elds.

De�nition 2.3.1 (Critic al p oint)

L et v : W ! R

n

b e a ve ctor �eld as in de�nition 2.1.1 which is c ontinuously di�er en-

tiable. L et further x

0

2 W b e a p oint wher e v ( x ) = 0 . Then x

0

is c al le d a critic al

p oint of the ve ctor �eld.

R emark 2.3.2

Ther e ar e sever al di�er ent terms for critic al p oints. They ar e also known as singular-

ities , singular p oints , zer os , or e quilibriums .

2.3.1.1 Classi�cation

Critical p oin ts can b e classi�ed using the eigen v alues of the deriv ation of the v ector

�eld. F or instance, w e can iden tify sinks that purely attract the 
o w in the vicinit y

while sour c es rep el it purely .

De�nition 2.3.3 (Sink)

L et v b e a ve ctor �eld as in de�nition 2.1.1 which is c ontinuously di�er entiable and x

0

a critic al p oint of v . L et further D v ( x

0

) b e the derivation of the ve ctor �eld v at x

0

. If

al l eigenvalues of D v ( x

0

) have ne gative r e al p arts, x

0

is c al le d a sink .

The follo wing theorem sho ws that sinks really ha v e an attracting prop ert y .

The or em 2.3.4

L et v : W ! R

n

b e a ve ctor �eld and x

0

a sink. L et further � b e the c orr esp onding

dynamic al system. L et us assume the r e al p art of every eigenvalue is less than � c ,

c > 0 . Then ther e exists a neighb orho o d U � W of x

0

such that

1. �

t

( x ) 2 U for al l x 2 U , t > 0 .

2. Ther e is an Euclide an norm on R

n

such that

j �

t

( x ) � x

0

j � e

� tc

j x � x

0

j

for al l x 2 U , t � 0 .

3. F or any norm on R

n

, ther e is a c onstant B > 0 such that

j �

t

( x ) � x

0

j � B e

� tc

j x � x

0

j

for al l x 2 U , t � 0 .

Pr o of:

See [HS74], pages 181 and 182. o
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14 Theory of V ector Fields

Cor ol lary 2.3.5

L et v , � , and x

o

b e as in the pr evious the or em. Then ther e exists a neighb orho o d U � W

of x

0

so that �

t

( x ) c onver ges to x

0

:

�

t

( x ) ! x

0

as t ! 1 for al l x 2 U

In the same w a y w e can de�ne sources.

De�nition 2.3.6 (Sour c e)

L et v b e a ve ctor �eld as in de�nition 2.1.1 which is c ontinuously di�er entiable and x

0

a critic al p oint of v . L et further D v ( x

0

) b e the derivation of the ve ctor �eld v at x

0

. If

al l eigenvalues of D v ( x

0

) have p ositive r e al p arts, x

0

is c al le d a sour c e .

2.3.1.2 Stabilit y

Since in computer science absolute exact calculation is not p ossible due to n umerical

errors w e need some sort of stabilit y if w e really w an t to classify critical p oin ts algorith-

mically . A critical p oin t that c hanges its b eha vior ev en when the v ector �eld is sligh tly

p erturb ed do es not ha v e a v ery signi�can t meaning in a ph ysical sense.

U

1U

x 0

Figure 2.8: A critical p oin t that is stable.

De�nition 2.3.7 (Stable critic al p oint)

L et v : W ! R

n

b e a ve ctor �eld as in de�nition 2.1.1 which is c ontinuously di�er entiable

and x

0

a stable critic al p oint of v . If for every neighb orho o d U � W of x

0

ther e is a

neighb orho o d U

1

� U of x

0

such that every str e amline x ( t ) with x (0) 2 U

1

is de�ne d and

x ( t ) 2 U for al l t > 0 then x

0

is c al le d a stable critic al p oint .

Figure 2.8 illustrates a stable con�guration.
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U

1U

x 0

Figure 2.9: An asymptotically stable critical p oin t.

De�nition 2.3.8 (Asymptotic al ly stable critic al p oint)

L et v , U , and U

1

b e as in the pr evious de�nition. If in addition U

1

c an b e chosen so

that lim

t !1

x ( t ) = x

0

then x

0

is c al le d an asymptotic al ly stable critic al p oint .

In �gure 2.9 w e sk etc h this situation.

U

x 0

Figure 2.10: A critical p oin t that is unstable.

De�nition 2.3.9 (Unstable critic al p oint)

L et v : W ! R

n

b e a ve ctor �eld as in de�nition 2.1.1 which is c ontinuously di�er entiable

and x

0

a stable critic al p oint of v . We c al l a critic al p oint that is not stable an unstable

critic al p oint . This me ans that ther e is a neighb orho o d U � W of x

0

such that for every
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16 Theory of V ector Fields

neighb orho o d U

1

� U of x

0

ther e is at le ast one str e amline x ( t ) starting at x (0) 2 U

1

which do es not c ompletely lie in U .

Figure 2.10 sho ws an unstable critical p oin t.

Figure 2.11: A critical p oin t that is stable but not asymptotically stable.

F or example, a sink is an asymptotically stable critical p oin t and therefore stable.

An example of a critical p oin t that is stable but not asymptotically stable is sho wn in

�gure 2.11. All streamlines surround the critical p oin t elliptically . This con�guration

is rather critical b ecause the sligh test p erturbation will c hange the critical p oin t in to a

source or a sink. Therefore, w e w an t to distinguish b et w een suc h n umerically critical

situations and n umerically stable ones.

The or em 2.3.10

L et v b e a ve ctor �eld as in de�nition 2.1.1 which is c ontinuously di�er entiable and x

0

a stable critic al p oint of v . Then no eigenvalue of D v ( x

0

) has p ositive r e al p art.

Pr o of:

See [HS74], pages 187 and 188. o

T o ha v e a common term for suc h n umerically stable con�gurations w e use the notion

of hyp erb olicity .

De�nition 2.3.11 (Hyp erb olic critic al p oint)

L et v b e a ve ctor �eld as in de�nition 2.1.1 which is c ontinuously di�er entiable and x

0

a critic al p oint of v . If the derivative D v ( x

0

) has no eigenvalue with r e al p art zer o the

critic al p oint is c al le d hyp erb olic .

Cor ol lary 2.3.12

A hyp erb olic critic al p oint is either unstable or asymptotic al ly stable.

This corollary sho ws that h yp erb olic critical p oin ts a v oid n umerically critical situa-

tions. These p oin ts can b e detected algorithmically since the b eha vior do es not signi�-

can tly c hange if there is a n umerical error that is small enough.
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2.3.2 Linear Case

Since w e use linear or bilinear in terp olation in our algorithms w e w an t to analyze the

linear case in more detail. This also giv es a b etter insigh t in to the di�eren t t yp es of

critical p oin ts. Therefore w e examine critical p oin ts in linear v ector �elds. First of all,

w e need to de�ne what w e exactly mean b y a linear v ector �eld.

De�nition 2.3.13 (Line ar ve ctor �eld)

L et W � R

n

b e an op en subset. A ve ctor �eld

v : W ! R

n

is c al le d line ar, if ther e exists a line ar map

A : W ! R

n

and a ve ctor b 2 R

n

such that

v ( x ) = Ax + b 8 x 2 W

if in addition b = 0 then v is c al le d homo gene ous line ar .

T o get a b etter insigh t in to linear v ector �elds w e in v estigate the phase p ortrait of

the di�eren t t yp es of linear v ector �elds. If w e restrict ourselv es to the h yp erb olic case

where det A 6= 0 the v ector b only giv es a displacemen t so that w e can neglect it in our

consideration. Nielson [NJ99] summarized all di�eren t cases that are p ossible. A linear

v ector �eld can ha v e at most one critical p oin t due to the linearit y . In order to get the

phase p ortrait w e ha v e to solv e the Cauc h y problem

d

dt

x ( t ) = Ax

with initial condition x (0) = k , k 2 R

n

.

L emma 2.3.14

L et v b e a homo gene ous line ar ve ctor �eld, which is describ e d by the matrix A 2 M at ( n �

n ) . Then ther e exists a solution for the di�er ential e quation

d

dt

x ( t ) = Ax ( t ) with initial c ondition x (0) = k 2 R

n

(2.1)

which is given by:

x = e

tA

k with e

A

=

1

X

k =0

A

k

k !

(2.2)
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18 Theory of V ector Fields

Pr o of:

Compute the deriv ation

d

dt

x ( t ):

d

dt

e

tA

k = k �

d

dt

e

tA

= k � Ae

tA

since the deriv ation of e

tA

can b e computed as follo ws:

d

dt

e

tA

= lim

h ! 0

e

( t + h ) A

� e

tA

h

= l im

h ! 0

e

tA

e

hA

� e

tA

h

= e

tA

lim

h ! 0

e

hA

� I

h

= e

tA

� A

o

Let us ha v e a closer lo ok at t w o dimensional linear v ector �elds whic h can b e de-

scrib ed b y a matrix A 2 M at (2 � 2). Then, w e can distinguish b et w een di�eren t cases

where w e are able to compute the deriv ation.

L emma 2.3.15

L et A 2 M at (2 � 2) b e a two dimensional matrix. Then ther e is an invertible matrix

P such that B = P AP

� 1

, wher e B c orr esp onds to one of the fol lowing thr e e di�er ent

typ es. �; � 2 C ar e the eigenvalues of A .

T yp e one: A is diagonalizable:

B =

�

� 0

0 �

�

T yp e t w o: � and � have non zer o imaginary p art:

B =

�

a � b

b a

�

T yp e three: � = � and A is not diagonalizable:

B =

�

� 0

1 �

�

The next subsections describ e the di�eren t t yp es in detail. The di�eren tial equation

is solv ed to sk etc h the phase p ortrait. W e assume that the matrices of the v ector �elds

are giv en in the form as sho wn in lemma 2.3.15.
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2.3.2.1 Linear V ector Fields of T yp e One

L emma 2.3.16

L et v b e a ve ctor �eld of typ e one as describ e d in lemma 2.3.15. Then the fol lowing

e quation holds for the str e amline x , wher e k =

�

k

1

k

2

�

is a p oint on the str e amline.

x ( t ) =

�

e

t�

k

1

e

t�

k

2

�

(2.3)

Pr o of:

A phase p ortrait of a v ector �eld of t yp e one can b e describ ed in principle in the follo wing

w a y .

A =

�

� 0

0 �

�

Compute e

tA

:

e

tA

=

1

X

k =0

( tA )

k

k !

=

1

X

k =0

�

t� 0

0 t�

�

k

k !

=

1

X

k =0

�

t�

k !

0

0

t�

k !

�

k

=

 

P

1

k =0

( t� )

k

k !

0

0

P

1

k =0

( t� )

k

k !

!

=

�

e

t�

0

0 e

t�

�

Altogether w e get the follo wing equation describing the streamline.

x ( t ) =

�

e

t�

k

1

e

t�

k

2

�

o

Therefore, w e mainly get three di�eren t cases b esides c hanging the orien tation of the

v ector �eld.

1st case: ( � > 0 > � ) In this case w e get the so called saddle singularit y , whic h is

sho wn in �gure 2.12.
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Figure 2.12: A saddle singularit y .

Figure 2.13: A no de singularit y .

2nd case: ( � < � < 0) An example for this case is the so called no de singularit y

sho wn in �gure 2.13.

3rd case: ( � = � < 0) Figure 2.14 sho ws suc h a fo cus singularit y .

2.3.2.2 Linear V ector Fields of T yp e Tw o

The matrix A that represen ts the v ector �eld mathematically describ es a rotation and

a scaling. This can b e sho wn easily when w e de�ne a rotational angle � := arccos(

a

r

)

where w e set r :=

p

a

2

+ b

2

. W e can deduce that:

a = r cos � (2.4)

b = r sin � (2.5)

Then w e can write the matrix A as follo ws:

A =

�

r 0

0 r

�

�

�

cos � � sin �

sin � cos �

�

(2.6)
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Figure 2.14: A fo cus singularit y .

L emma 2.3.17

L et v b e a ve ctor �eld of typ e two. Then the fol lowing e quation describ es a str e amline

wher e k =

�

k

1

k

2

�

is a p oint on the str e amline.

x ( t ) = e

ta

�

�

k

1

cos ( tb ) � k

2

sin ( tb )

k

1

sin ( tb ) + k

2

cos ( tb )

�

(2.7)

Pr o of:

W e in terpret the map T giv en b y the matrix A algebraically b y iden tifying R

2

with the

complex space C .

( x; y ) $ x + iy (2.8)

W e get the follo wing corresp ondence for T :

( x; y )  ! x + iy

x

?

y

T

x

?

y

Multiplying with a + ib

( ax � by ; bx + ay )  ! ( ax � by ) + i ( bx + ay )

(2.9)

In the same w a y there is a corresp ondence e

A

$ e

a + b

. This results with e

A

=

�

a

1

a

2

a

3

a

4

�

in the follo wing sc heme:

( x; y )  ! x + iy

x

?

y
e

A

x

?

y
e

a + ib

( a

1

x + a

2

y ; a

3

x + a

4

y )  ! e

a

( x cos b � y sin b + i ( x sin b + y cos b ))

(2.10)

By comparing the co e�cien ts w e can conclude that the matrix e

A

can b e represen ted

as follo ws:

e

A

= e

a

�

�

cos b � sin b

sin b cos b

�
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According to lemma 2.3.14 the follo wing equation holds for a streamline con taining the

p oin t k =

�

k

1

k

2

�

.

x ( t ) = e

ta

�

�

k

1

cos ( tb ) � k

2

sin ( tb )

k

1

sin ( tb ) + k

2

cos ( tb )

�

(2.11)

o

Figure 2.15: A cen ter singularit y .

Figure 2.16: A spiral singularit y .

With this equation w e can see ho w the streamlines b eha v e in suc h a v ector �eld. If

w e ha v e a = 0, the v ector �eld describ es simple circles as sho wn in �gure 2.15, while w e

get a spiral shap ed phase p ortrait if w e set a 6= 0 as sk etc hed in �gure 2.16.
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2.3.2.3 Linear V ector Fields of T yp e Three

L emma 2.3.18

L et v b e a ve ctor �eld of typ e thr e e and A the c orr esp onding matrix wher e v ( x ) = Ax

and A =

�

� 0

1 �

�

. Then we c an describ e a str e amline c ontaining the p oint k =

�

k

1

k

2

�

with

the fol lowing e quation:

x ( t ) = e

t�

�

�

k

1

k

1

t + k

2

�

(2.12)

Pr o of:

The matrix A can b e split up in the follo wing w a y:

A =

�

� 0

1 �

�

= � � I +

�

0 0

1 0

�

F or the matrix M =

�

0 0

1 0

�

the follo wing equation holds whic h can b e easily computed.

M

2

=

�

0 0

0 0

�

= 0

Consequen tly , w e get M

k

= 0 for all k � 2.

Then w e can compute e

tA

as follo ws:

e

tA

= e

t ( �I + M )

= e

t�I +

0

@

0 0

t 0

1

A

= e

t�I

� e

0

@

0 0

t 0

1

A

= e

t�I

� ( I +

�

0 0

t 0

�

) , using the ab o v e equation

= e

t�

�

�

1 0

t 1

�

Therefore, the follo wing equation describ es a streamline con taining the p oin t k =

�

k

1

k

2

�

.

x ( t ) = e

t�

�

�

k

1

k

1

t + k

2

�

(2.13)

o

Figure 2.17 sho ws an example for suc h an impr op er no de singularity .
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Figure 2.17: An improp er no de singularit y .

2.4 Streamline Computation

In this section w e describ e the computation of streamlines. Since the v ector �eld is

giv en on a triangular, quadrilateral, or tetrahedral grid the v ectors inside the cells are

in terp olated linearly resp ectiv ely bilinearly . In order to compute a streamline w e ha v e

to solv e the Cauc h y problem where the initial condition is giv en b y the starting p oin t

of the streamline. Therefore w e need to solv e a di�eren tial equation. Consequen tly , the

streamlines itself ha v e to b e calculated using ODE solv ers lik e for instance Runge-Kutta.

The streamlines can b e in tegrated in p ositiv e or negativ e direction starting at the giv en

starting p oin t. T o in tegrate in negativ e direction w e only need to in v ert the v ector �eld.

In addition, it is p ossible to compute streamlines exactly inside triangular cells.

2.4.1 Numerical Computation

F or n umerical in tegration w e use standard metho ds that can b e found in the n umerical

literature [T ri02 ][F eh69][PTVF92 ][Guc00 ]. W e fa v or predictor-corrector metho ds lik e

Runge-Kutta metho d with adaptiv e stepsize. An optimized implemen tation for a �fth

order Runge-Kutta metho d with adaptiv e stepsize can b e found in [PTVF92]. These

metho ds only use the in terp olation metho d inside the cells but do not dep end on a

sp ecial t yp e of grid.

2.4.2 Exact Computation

On a triangular grid the v ector �eld is in terp olated linearly . Inside a triangular cell w e

can represen t the v ector �eld as a single linear v ector �eld as in subsection 2.3.2. In

this subsection w e also explained an exact solution of the di�eren tial equation that has

to b e solv ed in order to compute a streamline. This metho d w as �rst in tro duced b y

Nielson [NHM97]. Consequen tly , w e can calculate a streamline starting at an arbitrary
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starting p oin t using these form ulas inside a triangle. When the streamline lea v es the

triangle w e determine the in tersection with one of the edges of the triangle n umerically .

Then w e can start the in tegration pro cess in the neigh b oring cell at that in tersection.

This w a y w e can go from one triangle to another.

2.5 Closed Streamlines

When computing streamlines it often happ ens that the streamline computation do es

not terminate. This is mostly due to closed streamlines where the streamline ends up

in a lo op that cannot b e left. These closed streamlines are in tro duced and explained

in this section. More ab out the theoretical bac kground can b e found in sev eral b o oks

[YqSlLs

+

86][Rou98].

2.5.1 Limit Sets

The top ological analysis of v ector �elds considers the asymptotic b eha vior of streamlines.

There w e ha v e t w o di�eren t kind of so called limit sets, the origin set or � -limit set of

a streamline and the end set or ! -limit set.

De�nition 2.5.1 ( � -limit set)

L et s b e a str e amline in a given ve ctor �eld v . Then we de�ne the � -limit set as the

fol lowing set:

f p 2 R

2

j9 ( t

n

)

1

n =0

� R ; t

n

! �1 ; lim

n !1

s ( t

n

) ! p g

De�nition 2.5.2 ( ! -limit set)

L et s b e a str e amline in a given ve ctor �eld v . Then we de�ne the ! -limit set as the

fol lowing set:

f p 2 R

2

j9 ( t

n

)

1

n =0

� R ; t

n

! 1 ; lim

n !1

s ( t

n

) ! p g

R emark 2.5.3

L et v b e a ve ctor �eld as in de�nition 2.1.1. We sp e ak of an � - or ! -limit set L of v if

ther e exists a str e amline s in the ve ctor �eld v that has L as � - or ! -limit set.

If the � - or ! -limit set of a streamline consists of only one p oin t, this p oin t is a critical

p oin t. The most common case of a � - or ! -limit set in a planar v ector �eld con taining

more than one inner p oin t of the domain is a closed streamline whic h is declared in the

next de�nition. Figure 2.18 sho ws an example for � - and ! -limit sets. Here w e ha v e a

critical p oin t and a closed streamline. The critical p oin t and the closed streamline are

their o wn � - and ! -limit set. F or ev ery other streamline the closed streamline is the

! -limit set. If the streamline starts inside the closed streamline the critical p oin t is the
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�
�
�
�

Figure 2.18: Example for � - and ! -limit sets.

� -limit set. Otherwise the � -limit set is empt y . No w that w e sho w ed an example for a

closed streamline let us giv e a precise de�nition.

De�nition 2.5.4 (Close d str e amline)

L et v b e a ve ctor �eld as in de�nition 2.1.1. A close d str e amline 
 : R ! R

n

; t 7! 
 ( t )

is a str e amline of a ve ctor �eld v such that ther e is a t

0

2 R with


 ( t + nt

0

) = 
 ( t ) 8 n 2 N

and 
 not c onstant.

R emark 2.5.5

Ther e ar e sever al di�er ent terms describing a close d str e amline. The terms limit cycle ,

close d orbit , and close d str e amline ar e e quivalent.

Similar to critical p oin ts w e de�ne asymptotic al ly stability of closed streamlines. If

a closed streamline is asymptotically stable it is attracting.

De�nition 2.5.6 (Asymptotic al ly stability of close d str e amlines)

L et v : W ! R

n

b e a ve ctor �eld as in de�nition 2.1.1 that is c ontinuously di�er entiable.

L et further � b e the c orr esp onding dynamic al system and 
 � W a close d str e amline. If

for every neighb orho o d U � W with 
 � U ther e is a neighb orho o d U

1

� U with 
 � U

1

such that �

t

( x ) 2 U for al l x 2 U

1

and t > 0 and

lim

t !1

min fk �

t

( x ) � z kj z 2 
 g = 0

then 
 is c al le d asymptotic al ly stable close d str e amline.

This means that an asymptotically stable closed streamline attracts the 
o w inside a

sp ecial neigh b orho o d. It also follo ws from this de�nition that an asymptotically stable

closed streamline is isolated from other closed orbits. In the same w a y there are closed

streamlines that are rep elling. F or instance, b y in v erting the v ector �eld w e can turn

an attracting closed streamline in to a rep elling one.
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2.5.2 P oincar � e Map

y
R(y)

x

S

R(x)

(a)

x

P

P

R(x)
R

S

S

(b)

Figure 2.19: P oincar � e section (a) and P oincar � e map (b).

Let us assume w e ha v e a t w o dimensional v ector �eld con taining one limit cycle.

Then w e can c ho ose a p oin t P on the limit cycle and dra w a cr oss se ction S whic h is

a line segmen t not parallel to the limit cycle across the v ector �eld. This line is called

a Poinc ar � e se ction . If w e start a streamline at an arbitrary p oin t x on S and follo w

it un til w e cross the P oincar � e section S again, w e get another p oin t R ( x ) on S . This

results in the Poinc ar � e map R . Figure 2.19 illustrates the situation. The left part sho ws

the P oincar � e section with the limit cycle in the middle dra wn with a thic k er line, while

the righ t part displa ys the P oincar � e map itself. Ob viously the p oin t P on the limit cycle

is mapp ed on to itself. Consequen tly , it is a �xed p oin t of the P oincar � e map.

Let us precise this in some de�nitions:

De�nition 2.5.7 (Cr oss se ction)

L et v b e a ve ctor �eld as in de�nition 2.1.1 and S � R

n

an op en set on a hyp erplane

of dimension n � 1 that is tr ansverse to v . T r ansverse to v me ans that v ( x ) =2 S for al l

x 2 S . Then S is c al le d a cr oss se ction .

De�nition 2.5.8 (Poinc ar � e map)

L et v b e a ve ctor �eld and � the dynamic al system b elonging to v . L et further b e S a

cr oss se ction that interse cts a close d str e amline at a p oint P . Then the Poinc ar � e map

is de�ne d as the map R : S ! S such that

x 7! �

t

( x ) ;
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wher e t is the time the str e amline starte d at x ne e ds to interse ct the cr oss se ction again

after one turn.

R emark 2.5.9

It is obvious that the p oint P on the close d str e amline is a �xe d p oint of the Poinc ar � e

map.

2.5.3 The P oincar � e-Bendixson Theorem

In this subsection w e sho w a fundamen tal result whic h mak es it easier to �nd closed

streamlines in a t w o dimensional v ector �eld. This prop ert y is exploited b y our algorithm

whic h is in tro duced later.

The or em 2.5.10 (Poinc ar � e-Bendixson The or em)

L et W � R

2

b e an op en subset and v : W ! R

2

a two dimensional, c ontinuously

di�er entiable ve ctor �eld. L et further L � W b e a nonempty c omp act limit set of the

ve ctor �eld v that c ontains no critic al p oint. Then L describ es a close d str e amline.

Pr o of:

See [HS74], pages 248 and 249. o

Cor ol lary 2.5.11

L et W � R

2

b e an op en subset and v : W ! R

2

a two dimensional, c ontinuously

di�er entiable ve ctor �eld. L et further D � W b e a nonempty c omp act subset which

c ontains no critic al p oint and s a str e amline inside D . If the str e amline s do es not le ave

D then ther e exists a close d str e amline inside D .

Using this corollary our algorithm to detect closed streamlines can simply in tegrate

a streamline and c hec k during the in tegration pro cess if it runs in to a compact region

that is nev er left. If w e �nd suc h a region this corollary states that w e found a closed

streamline.

2.6 V ector Field T op ology

The top ological graph, or simply top ology , of a v ector �eld describ es the structure of

the phase p ortrait. Considering saddle singularities w e can de�ne separatrices.

De�nition 2.6.1 (Sep ar atric es)

L et v b e a ve ctor �eld as in de�nition 2.1.1 and x

0

a sadd le singularity. The str e amlines

emer ging in eigendir e ction ar e c al le d sep ar atric es .
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Eac h separatrix connects the saddle p oin t with another critical p oin t or the b oundary

of the v ector �eld. The separatrices divide the v ector �eld in v arious top ological regions.

Eac h region cannot b e left b y an individual streamline except for the case where the

streamline crosses the b oundary . F urthermore, ev ery streamline in that region that

do es not reac h the b oundary con v erges to the same critical p oin t or closed streamline

for t ! 1 and to the same critical p oin t or closed streamline for t ! �1 . No w w e

in tro duced ev ery concept needed for v ector �eld top ology .

De�nition 2.6.2 (T op olo gy)

L et v b e a ve ctor �eld as in de�nition 2.1.1. The top olo gy is built by al l critic al p oints,

sep ar atric es and close d str e amlines of v .

(a) (b)

Figure 2.20: T op ological graphs of t w o v ector �elds.

Figure 2.20 sho ws t w o examples for top ological graphs of a simple v ector �eld. The

critical p oin ts are colored according to its t yp e: saddles are dra wn in red, sinks are blue

while sources are colored green. The v ector �eld in sub�gure (a) con tains one closed

streamline while the other sub�gure do es not con tain an y closed streamlines. In b oth

pictures w e can clearly recognize the principle structure of the 
o w inside the v ector

�elds.
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2.7 Structural Stabilit y

If a v ector �eld is sligh tly p erturb ed it ma y happ en that the top ology sta ys the same if the

c hange is su�cien tly small. This means that there exists a homeomorphism that maps

eac h streamline of the original 
o w to the p erturb ed one. This homeomorphism giv es a

one-to-one corresp ondence b et w een critical p oin ts and closed streamlines of the 
o w. If

suc h a homeomorphism exists w e sa y that the t w o 
o ws are top olo gic al ly e quivalent .

De�nition 2.7.1 (T op olo gic al ly e quivalent)

L et v and w b e two ve ctor �elds as in de�nition 2.1.1. L et further � and  b e the

dynamic al system ac c or ding to v r esp e ctively w . If ther e exists a home omorphism h :

R

n

! R

n

such that for any t

1

ther e is a t

2

with

h ( �

t

1

( x )) =  

t

2

( x )

then v and w ar e top olo gic al ly e quivalent .

T o de�ne neigh b oring v ector �elds w e need a norm on v ector �elds �rst. Then w e

can de�ne neigh b oring v ector �elds as v ector �elds that di�er only sligh tly .

De�nition 2.7.2

L et v b e ve ctor �eld as in de�nition 2.1.1 that is c ontinuous di�er entiable. Then the

norm k v k of a ve ctor �eld is de�ne d as k v k = max ( fk v ( x ) kj x 2 W g [ fk D v ( x ) kj x 2

W g ) . We al low k v k = 1 .

De�nition 2.7.3 (Neighb orho o d)

L et v b e a ve ctor �eld as in de�nition 2.1.1 that is c ontinuous di�er entiable. L et further

N = f w 2 f v j v : W ! R

n

gjk v � w k < � g . This me ans that every ve ctor �eld w 2 N is

a p erturb e d version of v . Then N is c al le d a neighb orho o d of v .

If there exists a neigh b orho o d N of a giv en v ector �eld v where ev ery v ector �eld is

top ologically equiv alen t to the other, the v ector �eld v is called structur al stable . This

means that the top ology of the v ector �eld that is sligh tly p erturb ed sta ys the same.

The follo wing de�nition precises that.

De�nition 2.7.4 (Structur al stable)

L et v b e a ve ctor �eld as in de�nition 2.1.1. If ther e is a neighb orho o d N of v such

that every ve ctor �eld w 2 N is top olo gic al ly e quivalent to v then v is c al le d structur al

stable .

W e no w w an t to giv e a theorem that explains when a t w o dimensional v ector �eld

is structural stable. But �rst w e need a de�nition whic h sho ws a sp ecial con�guration

concerning saddle singularities. V ector �elds con taining suc h a con�guration can nev er

b e structural stable.
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(a) Hetero clinic connection (b) Homo clinic connection

Figure 2.21: Saddle connections.

De�nition 2.7.5 (Sadd le c onne ctions)

L et v b e a ve ctor �eld as in de�nition 2.1.1 and s

1

and s

2

two sadd le singularities

of v . If a sep ar atrix c onne cts s

1

and s

2

then this sep ar atrix is c al le d a heter o clinic

c onne ction . If a sep ar atrix c onne cts s

1

with itself this sep ar atrix is c al le d homo clinic

c onne ction .

Figure 2.21 sho ws the t w o di�eren t con�gurations. The next theorem sho ws that

for structural stabilit y in a t w o dimensional v ector �eld it is necessary that the critical

p oin ts and closed streamlines need to b e h yp erb olic. Additionally , saddle connections

are not allo w ed.

The or em 2.7.6

L et v : W ! R

2

a ve ctor �eld as in de�nition 2.1.1 with a �nite numb er of critic al

p oints and close d str e amlines. Then v is structur al ly stable if and only if

1. al l critic al p oints of v ar e hyp erb olic.

2. e ach close d str e amline of v is either r ep el ling or attr acting.

3. ther e ar e no sadd le c onne ctions.

Pr o of:

See [HS74], pages 314 through 317. o

2.8 Bifurcations

Closed streamlines are in tro duced in the �eld b y structural c hanges. When a v ector �eld

c hanges o v er time there ma y b e a c hange in the top ology from one state to another.
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This, of course, implies that the v ector �eld is not structurally stable in that case. The

unstable state in b et w een is called a bifur c ation . This c hange ma y only a�ect one critical

p oin t and its nearer surrounding. Then w e call it a lo c al bifur c ation . The other case is

a glob al bifur c ation where the global structure of the 
o w is c hanged.

Here w e consider only bifurcations that result in the creation or v anishing of a closed

streamline. The main t yp es are the Hopf Bifur c ation whic h is a lo cal bifurcation and

the Perio dic Blue Sky in 2D Bifur c ation whic h is a global one.

(a) (b) (c)

(d) (e)

Figure 2.22: Hopf bifurcation.
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2.8.1 Hopf Bifurcation

Let us assume that w e are giv en an attracting fo cus as in �gure 2.22a so that a stream-

line spirals around this critical p oin t and �nally con v erges to it. If the attracting e�ect

w eak ens the n um b er of rotations of the streamline will increase as in �gure 2.22b. Con-

tin uing with this pro cess the attracting fo cus b ecomes a cen ter p oin t (�gure 2.22c) whic h

is an unstable structure: the Hopf bifurcation has o ccurred. Going further, the structure

b ecomes stable again and w e ha v e no w a rep elling fo cus. Since the global structure of

the 
o w has not c hanged, w e still ha v e an in
o w from the outside and a 
o w starting at

the critical p oin t. Consequen tly , a closed streamline app ears according to the P oincar � e-

Bendixson-Theorem [GH83 ] as in �gure 2.22d and 2.22e. In v erting the direction of time,

w e get a transition from a closed streamline with a rep elling fo cus inside in to an attract-

ing fo cus o v er an instan taneous cen ter where the closed streamline v anishes. Similar

transitions are obtained b y in v erting the direction of the 
o w, i.e. b y replacing sources

b y sinks. (It ma y b e noted that w e can apply the P oincar � e-Bendixson-theorem only if

the v ector �eld is con tin uous. F urther w e ha v e a region without critical p oin ts.)

2.8.2 P erio dic Blue Sky in 2D Bifurcation

(a) (b) (c)

Figure 2.23: P erio dic Blue Sky in 2D.

In this t yp e of bifurcation there are t w o di�eren t t yp es of critical p oin ts in v olv ed:

a saddle and an attracting fo cus. Figure 2.23a sho ws the situation. As the attracting

e�ect of the fo cus gets w eak er and w eak er w e see a homo clinic connection after some

time where the saddle is connected to itself as sho wn in �gure 2.23b. This results in a

bifurcation: when this con�guration breaks up again w e �nd a limit cycle whic h simply

app ears out of the blue. The reason for the o ccurrence of the closed streamline is that the

attracting fo cus is totally una�ected b y the whole ev en t. Since there is an out
o w to the

critical p oin t inside and to the saddle there m ust b e a critical p oin t or a closed streamline

in this region according to the P oincar � e-Bendixson theorem. Because of the fact that
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there are only the t w o critical p oin ts a closed streamline emerged. This con�guration

is sho wn in �gure 2.23c. Other bifurcations of the same t yp e can b e constructed b y

in v erting time or replacing the attracting fo cus with a rep elling one.
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Chapter 3

State of the Art

Flo ws o ccur in v arious di�eren t forms in science and engineering. F or instance, a wind

tunnel exp erimen t results in suc h a 
o w. The path of the air describ es ho w the 
o w

b eha v es around a sp ecial ob ject as, for example, a car. In
o ws in to sp ecial parts, lik e a

thrust c ham b er, are of in terest also. There, the 
o w describ es the injection of the gas.

The comp osition of gas and o xygen is v ery imp ortan t in com bustion pro cesses. A b etter

insigh t in to the 
o w can help optimizing this pro cess.

Sev eral visualization metho ds are a v ailable at presen t. Here, w e concen trate on

describing these metho ds that are useful in our application area. An o v erview o v er the

v arious visualization metho ds can also b e found in other publications [GL W97] and PhD

theses [L• of98][T ri02 ].

3.1 V ector Field Visualization

V arious metho ds exist that sho w di�eren t asp ects of v ector �elds. Hedgehog metho ds

[PvW93 ] dra w arro ws tangen tial to the 
o w. Eac h arro w represen ts a v ector at that

p osition. The length sho ws the v elo cit y . The principle structure of the 
o w can b e

recognized using this metho d. But sp ecial features lik e closed streamlines can easily b e

o v erseen. In the three dimensional case, o cclusion problems o ccur so that an analysis of

the v ector �eld is di�cult with this metho d.

T exture based metho ds visualize the whole phase p ortrait. There are mainly t w o

di�eren t metho ds for creating the texture: sp ot noise [vW91 ][dLvW95][dLPV96 ] and line

in tegral con v olution (LIC) [CL93]. T o create a sp ot noise texture, randomly w eigh ted

and p ositioned sp ots are accum ulated. The shap e of the sp ots con trols the texture

lo cally . If w e align, for instance, the larger axis of the sp ots parallel to the 
o w direction

the resulting texture visualizes the v ector �eld. The LIC metho d uses a white noise

texture as a basis. This texture gets smeared in the 
o w direction: another texture is

created where for ev ery pixel a short streamline is computed and the color v alues of
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Figure 3.1: V ector �eld con taining a closed streamline visualized using the LIC metho d.

eac h pixel of the white noise texture that is crossed b y this streamline is summed up.

Figure 3.1 sho ws an example of a LIC image.

Man y extensions [KB96][SJM96] and p erformance optimizations [SH95][SZH96] exist

for this metho d. T o in tro duce orien tation information orien ted line in tegral con v olution

(OLIC) w as prop osed b y W egenkittl et al. [W G97 ][W GP97 ]. F or time-dep enden t 
o ws

the standard metho d is not suitable b ecause it results in a 
ic k ering animation. There-

fore some extensions exist [Lan93][F C95] lik e for instance unsteady 
o w line in tegral

con v olution (UFLIC) [SK97][SK98]. This metho d is based on the fast LIC algorithm

[SH95]. The di�erence is in the con v olution k ernel: to ac hiev e temp oral coherence only

the pixel calculations with a smaller time-stamp than the actual one are considered.

T o trac k a particle in the 
o w o v er time streamlines, streaklines, and pathlines[Han93 ]

[Lan94] are used. A streamline sho ws the path of a massless particle in the 
o w. Suc h

a particle follo ws the tra jectory of the dynamical system. A streakline visualizes the

path of dy e injected for a p erio d of time at a �xed p osition in to a time dep enden t 
o w

while a pathline only follo ws a single particle. A particle corresp onds to a p oin t mo ving

through the 
o w. If w e use more general ob jects lik e lines, circles, or implicit surfaces

streamsurfaces, streamribb ons, stream tub es, or stream balls are created [BDH

+

94 ].

Also, an n-sided p olygon can b e placed p erp endicular to the 
o w and mo v ed along the

tra jectory [SVL91]. This metho d additionally depicts lo cal 
o w attributes, lik e rotation

and shear.
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3.2 T op ological Metho ds

T op ological metho ds depict the structure of the 
o w b y connecting sources, sinks, and

saddle singularities with separatrices. Critical p oin ts w ere �rst in v estigated b y P erry

[PF74][P er84][PC87 ], Dallmann [Dal83 ], Chong [CPC90] and others. The metho d itself

w as �rst in tro duced in visualization for t w o dimensional 
o ws b y Helman and Hesselink

[HH89b][HH89a][HH90][HH91][Hel97 ]. Sev eral extensions to this metho d exist. Sc heuer-

mann et al. [SHJK00] extended the metho d to w ork on a b ounded region. T o get the

whole top ological sk eleton of the v ector �eld, p oin ts on the b oundary ha v e to b e tak en

in to accoun t, also. These p oin ts are called b oundary saddles. T o create a time dep en-

den t top ology for t w o dimensional v ector �elds, Helman and Hesselink [HH91] use the

third co ordinate to represen t time. This results in surfaces represen ting the ev olution

of the separatrices. A similar metho d is prop osed b y T rico c he et al. [TSH01][TWSH02 ]

but this w ork fo cuses on trac king singularities through time. Although closed stream-

lines can act in the same w a y as sources or sinks, they are ignored in the considerations

of Helman and Hesselink and others.

Figure 3.2: Streamsurface inside the blun t �n dataset from NASA [HB90].

T o extend this metho d to three dimensional v ector �elds, Globus et al. [GLL91 ] pre-

sen ted a soft w are system that is able to extract and visualize some top ological asp ects

of three dimensional v ector �elds. The v arious critical p oin ts are c haracterized using the

eigen v alues of the Jacobian. This tec hnique w as also suggested b y Helman and Hesselink

[HH91]. But the whole top ology of a three dimensional 
o w is not y et a v ailable. There,

streamsurfaces are required to represen t separatricies. A few algorithms for computing

Departmen t of Computer Science, Univ ersit y of Kaiserslautern, German y



38 State of the Art

streamsurfaces exist [Hul92 ][SBH

+

01] but are not y et in tegrated in a top ological algo-

rithm. Figure 3.2 sho ws a streamsurface inside the famous blun t �n dataset pro vided

b y NASA [HB90] constructed with the algorithm b y Sc heuermann et al. [SBH

+

01].

3.3 Closed Streamlines in Visualization

There are some algorithms to �nd closed streamlines in dynamical systems that can b e

found in the n umerical literature. Aprille and T ric k [A T72] prop osed a so called sho oting

metho d. There, the �xed p oin t of the P oincar � e map is found using a n umerical algo-

rithm lik e Newton-Raphson. Dellnitz et al. [DJ99 ] detect almost cyclic b eha vior. It is a

sto c hastical approac h where the F rob enius-P erron op erator is discretized. This sto c has-

tical measure iden ti�es regions where tra jectories sta y v ery long. But these mathemat-

ical metho ds t ypically dep end on con tin uous dynamical systems where a closed form

description of the v ector �eld is a v ailable. This is usually not the case in visualization

and sim ulation where the data is giv en on a grid and in terp olated inside the cells. V an

V eldh uizen [vV87] uses the P oincar � e map to create a series of p olygons appro ximating

an attracting closed streamline. The algorithm starts with a rough appro ximation of

the closed streamline. Ev ery v ertex is mapp ed b y the P oincar � e map iterativ ely to get a

�ner appro ximation. Then, this series con v erges to the closed streamline.

T o get a hierarc hical approac h for the visualization of in v arian t sets, and therefore

closed streamlines also, B • urkle et al. [BDJ

+

99] enclose the in v arian t set b y a set of

b o xes. They start with a b o x that surrounds the in v arian t set completely . This b o x is

successiv ely bisected in cycling directions. It is alw a ys ensured that the result still in-

cludes the complete in v arian t set. Using this bisection, an appro ximation of the in v arian t

set is �nally found whic h can b e rendered using a v olume renderer. The publication of

Guc k enheimer [Guc00] giv es a detailed o v erview concerning in v arian t sets in dynamical

systems.

Some publications deal with the analysis of the b eha vior of dynamical systems.

Sc hematic dra wings sho wing the v arious kinds of closed streamlines can b e found in the

b o oks of Abraham and Sha w [AS84][AS88]. Fisc hel et al. [FDM

+

97 ] presen ted a case

study where they applied di�eren t visualization metho ds to dynamical systems. In their

applications also strange attractors, lik e the Loren tz attractor, and closed streamlines

o ccur. So called sw eeps whic h are tra jectories represen ted as tub es are used. These

sw eeps allo w to in tro duce a color co ding sc heme. F or instance, the color can help to

recognize that a tra jectory still slo wly mo v es to w ards a closed streamline that w eakly

attracts.

W egenkittl et al. [WLG97 ] visualize higher dimensional dynamical systems. T o

displa y tra jectories parallel co ordinates [ID90 ] are used. A tra jectory is sampled at

v arious p oin ts in time. Then these p oin ts are displa y ed in the parallel co ordinate system

and a surface is extruded to connect these p oin ts. As an example, also a c haotic attractor
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deriv ed from the Loren tz system is visualized. Hepting et al. [HDER95] study in v arian t

tori in four dimensional dynamical systems b y using suitable pro jections in to three

dimensions to enable detailed visual analysis of the tori. This visualization can help

when limits of mathematical analysis are reac hed to get more insigh t in to the dynamical

system.

Figure 3.3: P oincar � e section with closed streamline (image courtesy of Helwig Hauser,

VR Vis[LK G97 ]).

L• o�elmann [L• of98][LK G97 ] uses P oincar � e sections to visualize closed streamlines

and strange attractors. P oincar � e sections de�ne a discrete dynamical system of lo w er

dimension whic h is easier to understand. The P oincar � e section whic h is transv erse to

the closed streamline is visualized as a disk. On the disk, sp ot noise is used to depict

the v ector �eld pro jected on to that disk. By this metho d, it can b e clearly recognized

whether the 
o w, for instance, spirals around the closed streamline and is attracted

or rep elled or if it is a rotating saddle. Additionally , streamlines and streamsurfaces

sho w the v ector �eld in the vicinit y of the closed streamline that is not lo cated on the

disk visualizing the P oincar � e section. Figure 3.3 sho ws an example of that visualization

metho d.

3.4 Distributed Computing

Due to increasing computing p o w er during the last y ears 
o w sim ulations b ecame larger

and larger at �ner resolutions. Often, these sim ulations are computed on a parallel

mac hine. Consequen tly , it tak es a long time to compute an appropriate visualization for
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suc h big datasets. Esp ecially , when dealing with an algorithm that needs to compute

man y streamlines it helps a lot to compute this in parallel also. Sev eral parallel algo-

rithms exist in visualization. In the follo wing, w e w an t to list a few of them that deal

with problems that are related to this w ork.

Sujudi et al. [SH96] presen ted a metho d for computing streamlines in a parallel

en vironmen t b y splitting the dataset in to sev eral sub-domains. If the streamline lea v es

a sub-domain another pro cess resp onsible for the actual domain has to con tin ue the

computation. Reinhard et al. [R CJ99] prop osed a parallel rendering metho d that dis-

tributes tasks for eac h ra y whic h has to b e computed to the di�eren t pro cessors of the

parallel mac hine. A parallelization of line in tegral con v olution w as presen ted b y Z• oc kler

et al. [ZSH96] where the v ector �eld is divided in to sev eral sub domains dep ending on

the n um b er of pro cessors used.
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Chapter 4

Detection and Visualization in

Planar Flo ws

This c hapter describ es an algorithm that detects if an arbitrary streamline c con v erges

to a closed curv e, also called a limit cycle. This means that c has 
 as � - or ! -limit set

dep ending on the orien tation of in tegration. W e do not assume an y kno wledge on the

existence or lo cation of the closed curv e, so that the algorithm can detect stable closed

streamlines. W e exploit the fact that w e use linear in terp olation inside the cells for

the pro of of our algorithm. But the principle of the algorithm w orks on an y piecewise

de�ned planar v ector �eld where one can determine the top ology inside the pieces. First,

w e describ e ho w to explain and pro v e the presence of a closed streamline and �nally w e

giv e a pro cedure ho w to �nd the exact p osition of the closed streamline.

4.1 Detection of Closed Streamlines

In a precomputational step ev ery singularit y of the v ector �eld is determined. T o �nd

all stable closed streamlines w e mainly compute the top ological sk eleton of the v ector

�eld. W e use an ordinary streamline in tegrator, lik e for instance an ODE solv er using

Runge-Kutta. But w e extended this streamline in tegrator so that it is able to detect

closed streamlines. In order to �nd all closed streamlines that reside inside another

closed streamline w e ha v e to con tin ue in tegration after w e found a closed streamline

inside that region.

4.1.1 Theory

The basic idea of our streamline in tegrator is to determine a region of the v ector �eld

that is nev er left b y the streamline. According to the P oincar � e-Bendixson-Theorem, a

streamline approac hes a closed streamline if no singularit y exists in that region.
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Figure 4.1: A streamline approac hing a limit cycle has to reen ter cells.

Notation 4.1.1 (A ctual ly investigate d str e amline)

We use the term actual ly investigate d str e amline to describ e the str e amline that

we che ck if it runs into a limit cycle.

T o reduce computational cost w e �rst in tegrate the streamline using a Runge-Kutta-

metho d of �fth order with an adaptiv e stepsize con trol. Ev ery cell that is crossed b y the

streamline is stored during the computation. If a streamline approac hes a limit cycle it

has to reen ter the same cell again as sho wn in �gure 4.1. This results in a c el l cycle :

De�nition 4.1.2 (Cel l cycle)

L et s b e a str e amline in a given ve ctor �eld v . F urther, let G b e a set of c el ls r epr esenting

an arbitr ary r e ctangular or triangular grid without any holes. L et C � G b e a �nite

se quenc e c

0

; : : : ; c

n

of neighb oring c el ls wher e e ach c el l is cr osse d by the str e amline s in

exactly that or der and c

0

= c

n

. If s cr osses every c el l in C in this or der again while

c ontinuing, C is c al le d a c el l cycle .

This cell cycle iden ti�es the region men tioned earlier. T o c hec k if this region can b e

left w e could in tegrate bac kw ards starting at ev ery p oin t on the b oundary of the cell

cycle. If there is one p oin t con v erging to the actually in v estigated streamline w e kno w

for sure that the streamline will lea v e the cell cycle. If not, the actually in v estigated

streamline will nev er lea v e the cell cycle. Since there are in�nitely man y p oin ts on the

b oundary this, of course, results in a non-terminating algorithm. T o crac k this problem

w e ha v e to reduce the n um b er of p oin ts w e ha v e to c hec k. Therefore w e de�ne p otential

exit p oints :

De�nition 4.1.3 (Potential exit p oints)

L et C b e a c el l cycle in a given grid G as in De�nition 4.1.2. Then ther e ar e two kinds

of p otential exit p oints . First, every vertex of the c el l cycle C is a p otential exit

Departmen t of Computer Science, Univ ersit y of Kaiserslautern, German y



Closed Streamlines in Flo w Visualization 43

p oint . Se c ond, every p oint on an e dge at the b oundary of C wher e the ve ctor �eld is

tangential to the e dge is also a p otential exit p oint . Her e, only e dges that ar e p art

of the b oundary of the c el l cycle ar e c onsider e d. A dditional ly, only the p otential exit

p oints in the spir aling dir e ction of the str e amline ne e d to b e taken into ac c ount.

T o determine if the streamline lea v es the cell cycle w e start a bac kw ard in tegrated

streamline to see where w e ha v e to en ter the cell cycle in order to lea v e it at that exit.

W e will sho w later that it is su�cien t to only c hec k these p oten tial exit p oin ts if w e

w an t to �gure out if the streamline can lea v e the cell cycle.

Notation 4.1.4 (Backwar d inte gr ate d str e amline)

We use the term b ackwar d inte gr ate d str e amline for the str e amline we inte gr ate

by inverting the ve ctors of the ve ctor �eld starting at a p otential exit p oint in or der to

validate this exit p oint.

exit

Figure 4.2: If a real exit p oin t can b e reac hed, the streamline will lea v e the cell cycle.

De�nition 4.1.5 (R e al exit p oints)

L et P b e a p otential exit p oint of a given c el l cycle C as in de�nition 4.1.3. If the

b ackwar d inte gr ate d str e amline starting at P do es not le ave the c el l cycle after one ful l

turn thr ough the c el l cycle, the p otential exit p oint is c al le d a r e al exit p oint .

Since a streamline cannot cross itself the bac kw ard in tegration starting at a real

exit p oin t con v erges to the actually in v estigated streamline. Consequen tly , the actually

in v estigated streamline lea v es the cell cycle near that real exit p oin t. Figure 4.2 sho ws

suc h a real exit p oin t.

If on the other hand no real exit p oin t exists w e can determine for ev ery p oten tial

exit p oin t where w e ha v e a region with an in
o w that lea v es at that p oten tial exit.

Consequen tly , the actually in v estigated streamline cannot lea v e near that p oten tial exit

p oin t.

With these de�nitions w e can form ulate the main theorem for our algorithm:
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exit

exit

entry

Figure 4.3: If no real exit p oin t can b e reac hed, the streamline will approac h a limit

cycle.

The or em 4.1.6

L et C b e a c el l cycle with no singularity inside and E the set of p otential exit p oints.

If ther e is no r e al exit p oint among the p otential exit p oints E or ther e ar e no p otential

exit p oints at al l then ther e exists a close d str e amline inside the c el l cycle.

Pr o of: (Sketch)

Let C b e the cell cycle. It is ob vious that w e cannot lea v e the cell cycle C if all bac kw ard

in tegrated streamlines started at ev ery p oin t on the b oundary of C lea v e the cell cycle

C . According to the P oincar � e-Bendixson-theorem, there exists a closed streamline inside

the cell cycle in that case.

W e will sho w no w that it is su�cien t to treat only the p oten tial exit p oin ts. If the

bac kw ard in tegrated streamlines starting at all these p oten tial exit p oin ts lea v e the cell

cycle the bac kw ard in tegration of an y p oin t on an edge will also do.

Figure 4.4 sho ws the di�eren t con�gurations of p oten tial exits. Let E b e an arbitrary

p oin t on an edge b et w een t w o p oten tial exit p oin ts. In part (a) b oth bac kw ard in tegrated

streamlines starting at the v ertices V

1

and V

2

lea v e the cell cycle. Consequen tly , E cannot

b e an exit. It w ould need to cross one of the other bac kw ard in tegrated streamlines whic h

con tradicts with theorem 2.1.8.

P art (b) of �gure 4.4 sho ws the case where the v ector at a p oin t on the edge is

tangen tial to the edge. Ob viously , if E lies b et w een V

1

and T the bac kw ard in tegrated

streamline will lea v e the cell cycle immediately . If it lies b et w een T and V

2

and con v erges

to the actually in v estigated streamline it has to cross the bac kw ard in tegrated streamline

started at T . This con tradicts with theorem 2.1.8. Because of the linear in terp olation

at the edge, part (c) is also imp ossible.

W e ha v e sho wn that the actually in v estigated streamline cannot lea v e the cell cycle.

Consequen tly , there exists a closed streamline inside the cell cycle C since there is no

singularit y inside C . o
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backward integration

1 2V VE

actual streamline

leaves cell cycle

(a)

1 2V VT E

actual streamline

backward integration

leaves cell cycle

(b)

backward integration

1 2V VE

actual streamline

(c)

backward integration

1 2V VE

actual streamline

(d)

backward integration

1 2V VT E

actual streamline

(e)

Figure 4.4: Di�eren t cases of p oten tial exits. (a) and (b) is imp ossible b ecause stream-

lines cannot cross eac h other, (c) con tradicts with the linear in terp olation on an edge,

in (d) and (e) b oth bac kw ard in tegrations con v erge to the actual streamline so that the

p oin t E is a real exit.
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R emark 4.1.7

T o get a p ossible c on�gur ation the b ackwar d inte gr ation starting at the vertex V

1

must

also c onver ge to the str e amline b e c ause it c annot cr oss the b ackwar d inte gr ation starting

at p oint E as in p art (d) of �gur e 4.4. Part (e) explains why we also ne e d to investigate

the tangential c ase. If we start a b ackwar d inte gr ate d str e amline at p oint E it c onver ges

towar ds the actual ly investigate d str e amline. But if we only c onsider the vertic es of the

e dge, b oth exit p oints may b e no r e al exit p oints. Ther efor e we also have to start a

b ackwar d inte gr ate d str e amline at the p oint T , wher e the ve ctor �eld is tangential to the

e dge, to �gur e out that we le ave the c el l cycle at this e dge. On the other hand, a b ackwar d

inte gr ate d str e amline starting at any p oint b etwe en V

1

and T imme diately le aves the c el l

cycle due to the line ar interp olation.

4.1.2 Algorithm

With theorem 4.1.6 w e are able to describ e our algorithm in detail. It mainly consists

of the same three di�eren t states:

Ê streamline in tegration: iden tifying one cell c hange after the other, c hec k at eac h

cell if w e complete a cell cycle.

Ë c hec king for exits: going bac kw ards through the crossed cells and lo oking for

p oten tial exit p oin ts.

Ì v alidating exit: in tegrating bac kw ards a curv e from p oten tial exit through the

whole cell cycle.

Start critical point

boundary

limit cycle

exit valid

       foundexit
starts
outside

potential exit

(3) Validating
     Exit

(2) Checking
for Exit

(1) Streamline
Integration

cell cycle
detected

Figure 4.5: The UML state diagram of our algorithm.

The algorithm switc hes its states after the ev en ts sho wn in the state diagram in

�gure 4.5. W e use a standard in tegration metho d to compute the streamline, �rst. In
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this step w e only c hec k for cell cycles. This sa v es computational time since the c hec king

of all the exits is rather exp ensiv e. If w e detect a cell cycle w e ha v e to �nd all p oten tial

exit p oin ts. After that w e need to v alidate eac h of the p oten tial exit p oin ts to �gure out

if there is a real exit p oin t among them. If this is the case w e did not run in to a closed

streamline y et. Therefore w e con tin ue with the standard in tegration. The algorithm

exits if w e could not �nd a real exit p oin t among all the p oten tial exit p oin ts or if w e

reac hed a critical p oin t or the b oundary of the v ector �eld.

R emark 4.1.8

The or em 4.1.6 guar ante es that our algorithm dete cts close d str e amlines if we che ck every

p otential exit p oint.

Figure 4.6: Exits of a cell cycle.

Figure 4.6 sho ws a real example of our algorithm. There w e start a streamline near

the source in the cen ter of the �gure. This streamline spirals un til w e �nd the �rst cell

cycle. W e stopp ed the in tegration there for this example. The �gure also sho ws all exits

and its bac kw ard in tegrated streamlines. The streamline itself is colored blac k. The grid

is displa y ed in a ligh ter color. In this example, ev ery p oten tial exit p oin t is sho wn. W e

can see that p oten tial exit p oin ts whic h are passed b y a bac kw ard in tegrated streamline

do not necessarily need to b e in v estigated b ecause if the bac kw ard in tegrated streamline

lea v es the cell cycle the other one will also do. Figure 4.7 sho ws this in detail. There

the bac kw ard in tegrated streamline starting at Exit 2 also has to lea v e the cell cycle

b ecause it cannot cross the bac kw ard in tegrated streamline starting at Exit 1 . In the

Departmen t of Computer Science, Univ ersit y of Kaiserslautern, German y



48 Detection and Visualization in Planar Flo ws

Figure 4.7: Exit of the cell cycle whic h do es not need to b e in v estigated.

other case, where the bac kw ard in tegrated streamline started at Exit 1 sta ys inside the

cell cycle, w e ha v e to con tin ue the actually in v estigated streamline, an yw a y .

Since the streamline spirals from the inner region to the outside, w e only ha v e to

consider the p oten tial exits in that direction. In the example, ev ery bac kw ard in tegrated

streamline lea v es the cell cycle. Consequen tly , there is a limit cycle in this cell cycle

whic h can b e lo calized as describ ed in the next section.

4.2 Exact Lo cation of Closed Streamlines

Since w e kno w a region that is nev er left b y the streamline w e can �nd the exact p osition

of the closed streamline using the P oincar � e map. This map is describ ed in detail in the

subsection 2.5.2.

T o �nd the exact p osition of the closed streamline w e can use the edge where w e

detected the cell cycle as a P oincar � e section. Then w e only ha v e to �nd the �xed p oin t

of the P oincar � e map. W e use a binary searc h to �nd this �xed p oin t: w e divide the edge

where w e detected the cell cycle in to t w o parts. A t the mid p oin t w e start a streamline to

see whic h part of the edge is in tersected b y the streamline after one full turn. Since the

streamline cannot lea v e the cell cycle, it is guaran teed that the streamline in tersects one

part of the edge. Then, this part is sub divided again and w e start another streamline

at the mid p oin t. This pro cess con tin ues un til w e are close enough to the �xed p oin t of

the P oincar � e map. W e use the length of the part of the edge as a stopping criterion.

This �xed p oin t giv es us a p oin t lying on the closed streamline. If w e start another

streamline at that p oin t this streamline will follo w the closed streamline w e are lo oking

for. After one turn, i.e. after reac hing the start p oin t again, w e kno w the exact lo cation

of the closed streamline.
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4.3 Results

Figure 4.8: Simple v ector �eld with limit cycle.

The �rst example is a v ector �eld that con tains only one closed streamline. It is

sampled on a regular grid using a sligh tly c hanged V an der Pol's e quation . The de�ning

equation for the v ector �eld V is

V

�

x

y

�

=

�

y � x

3

+ �x

� x

�

: (4.1)

Figure 4.9: Simple v ector �eld with no limit cycle.
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According to Hirsc h and Smale[HS74 ] a limit cycle o ccurs if w e set 0 < � � 1.

An analysis of the �eld sho ws that w e ha v e a source at (0 ; 0). When starting our

algorithm near that singularit y it in tegrates the streamline un til it detects the limit cycle

as sho wn in �gure 4.8. Figure 4.8 also includes the hedgehog of the v ector �eld, a glyph

visualization metho d where w e use arro ws represen ting the v ectors at the corresp onding

p osition. The arro ws are t wice as long as the v ectors of the �eld.

In �gure 4.9, w e in v estigate a v ector �eld whic h spirals from the singularit y to the

outer regions. Again, w e used equation 4.1 but w e set � = � 0 : 02 to compute the

v ector �eld. Consequen tly , there is no limit cycle in the v ector �eld. Our algorithm

correctly fails to detect one, when started near the singularit y at (0 ; 0) and con tin ues

the streamline computation un til it reac hes the b oundary of the v ector �eld. Here, also

the hedgehog of the v ector �eld is displa y ed scaled b y a factor of t w o.

Figure 4.10: V orticit y v ector �eld of a turbulen t 
o w { hedgehog.
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Figure 4.11: V orticit y v ector �eld of a turbulen t 
o w { limit cycles.

Figure 4.12: V orticit y v ector �eld visualized b y the top ological sk eleton including closed

streamlines.
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The third example is a sim ulation of a swirling jet with an in
o w in to a steady

medium. The sim ulation originally resulted in a three dimensional v ector �eld but w e

used a cutting plane and pro jected the v ectors on to this plane to get a t w o dimensional

�eld. This dataset w as pro vided b y Prof. Kollmann from the mec hanical engineering

departmen t at the Univ ersit y of California at Da vis. In this application one is in terested

in in v estigating the turbulence of the v ector �eld and in regions where the 
uid sta ys

v ery long. This is necessary b ecause some c hemical reactions need a sp ecial amoun t of

time. These regions can b e lo cated b y �nding closed streamlines. Figure 4.10 sho ws the

hedgehog of that v ector �eld scaled b y a factor of t w o. In �gure 4.11 one can see some of

the closed streamlines detected b y our algorithm. All these limit cycles are lo cated in the

upp er region of the v ector �eld. Additionally �gure 4.11 includes the hedgehog where

the arro ws represen ting the v ectors are four times longer than the corresp onding v ector.

Figure 4.12 sho ws all closed streamlines of this v ector �eld including the top ological

sk eleton.

T o compare our enhancemen ts with usual streamline computation metho ds, w e im-

plemen ted an algorithm whic h computes the top ological sk eleton as describ ed in [HH91].

Therefore w e ha v e to determine the singularities. Then w e start a streamline at eac h

saddle p oin t displaced a little bit in p ositiv e and negativ e eigendirection of b oth eigen-

v ectors. Remind that our algorithm do es not need an y exit conditions other than the

detection of closed streamlines or reac hing a singularit y or the b order of the data!

T o get an idea of the computational cost of our metho d w e also implemen ted a

simple ODE solv er to compute the streamlines. The v ector �eld sho wn in �gure 4.10

con tains 337 singularities. The algorithm using a simple ODE solv er needed 738 seconds

to compute the top ological sk eleton on a P en tium I I 350 MHz. Using our streamline

in tegration metho d, whic h uses the same ODE solv er but c hec ks for limit cycles, w e

only needed 604 seconds on the same system whic h is 18 p ercen t faster! The reason for

that is that w e do not need to w ait un til the ODE solv er reac hes a certain n um b er of

steps if w e run in to a limit cycle. This sa v es some time whic h w e can use to c hec k for

limit cycles.

4.4 Limitations

If more than one closed streamline crosses the same cell, the algorithm ma y fail to detect

these closed streamlines. F or instance, there is a structural unstable con�guration with

one closed streamline inside the other. One closed streamline acts lik e a source, lets

sa y the inner one, while the other one b eha v es lik e a sink so that the 
o w starts at the

�rst and is attracted b y the second one. Since there is an out
o w out of the cell the

algorithm cannot distinguish b et w een a regular out
o w and this con�guration.

Figure 4.13 sho ws an example for suc h a con�guration. The 
o w direction inside the

�rst closed streamline is the same than b ehind the second one. It lo oks the same as if
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Figure 4.13: Unstable closed streamlines.

there are no closed streamlines at all. Consequen tly , the algorithm fails to detect b oth

closed streamlines.
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Chapter 5

P arallel Detection of Closed

Streamlines

T o determine the closed streamlines of a v ector �eld man y streamlines ha v e to b e com-

puted. In fact, w e compute the top ological sk eleton. This graph leads us to the closed

streamlines. Since the n um b er of streamlines ma y b e large dep ending on the giv en v ec-

tor �eld, this ma y tak e sev eral min utes or ev en hours, esp ecially since w e also ha v e to

compute ev en more bac kw ard in tegrated streamlines. Therefore w e created a parallel

v ersion of this algorithm to decrease computational time b y distributing the streamline

computation to sev eral clien ts. Some more information on concurren t programming can

b e found in the literature [Sc h97 ][Mul93] [Ung97][Aga89 ].

First, w e describ e some parallel mac hines that can b e used for our algorithm. Then

t w o di�eren t parallelization metho dologies are discussed in the next section. In the end

of this c hapter w e sho w the results including di�eren t timings on sev eral test systems.

5.1 P arallel Mac hines

In this section w e describ e brie
y some parallel mac hines, the Cra y/SGI T3E, the IBM

RS/6000 SP , and Lin ux clusters. The �rst one uses a distribute d shar e d memory concept

while the other t w o ones do not share their memory at all.

5.1.1 Cra y/SGI T3E

The Cra y/SGI T3E is a v ailable since 1996. It is a distributed shared memory system

where ev ery no de shares its memory with all the others. It uses a virtual address space

to access the memory that is spread among all no des. The pro cessor used for the no des is

the DEC Alpha pro cessor 21164. This pro cessor consists of t w o in teger and t w o 
oating

p oin t units with IEEE 64 bit arithmetic. It has an eigh t KB �rst lev el and 96 KB second
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lev el cac he directly on the c hip.

The GigaR ing tec hnology based on the IEEE SCI standard is used to connect the

no des. Ev ery no de is bi-directional connected to its neigh b or in a three dimensional

net w ork top ology .

5.1.2 IBM RS/6000 SP

The IBM RS/6000 SP uses PO WER4 micropro cessors. This t yp e of pro cessor has an

SMP-on-a-chip design. It consists of t w o 1.3 GHz pro cessors including second lev el

cac he directly on one c hip. Ev ery no de has its o wn memory . So the parallel program

has to use a message passing system as for instance PVM or MPI.

N15
N14
N13
N12

N11
N10
N9
N8

N7
N6
N5
N4

N3
N2
N1
N0

Figure 5.1: HPS basic elemen t of an IBM RS/6000 SP for 16 no des.

Up to sixteen no des are group ed together in a net w ork con�guration as sho wn in

�gure 5.1 using high p erformanc e switches (HPS). If more than sixteen no des are used

sev eral of these groups ha v e to b e in terconnected.

5.1.3 Lin ux Clusters

With Lin ux clusters there are no restrictions concerning net w ork top ology , memory , or

CPU sp eed. Almost ev ery standard PC comp onen t can b e used in a Lin ux cluster.

Ev en sev eral desktop Lin ux computers that are connected through an Ethernet can b e
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called a Lin ux cluster. But usually the net w ork is the b ottlenec k in suc h a system.

Therefore faster net w ork devices lik e for instance a GigaBit net w ork device or Myrinet

host in terface is used. A 
at, tree shap ed net w ork top ology is p ossible for a Lin ux

cluster. But esp ecially with a greater n um b er of no des a net w ork with routes from an y

to an y other no de is desirable to a v oid collisions and facilitate faster transfers.

Because of their lo w prices and the great scalabilit y Lin ux clusters b ecome more and

more p opular. They also app ear no w ada ys in the list of the top 500 Sup ercomputer

Sites.

5.1.4 Comparison

Cra y/SGI T3E IBM RS/6000 SP Lin ux Cluster

Pro cessor t yp e DEC Alpha 21164 p690 serv er (dual) e.g. A thlon

Num b er of pro cessors up to 2176 up to 16 unlimited

Memory size (p er no de) 512 MB { up to 3 GB

Clo c k sp eed (p er no de) up to 675 MHz up to 1.3 GHz up to 2GHz

Net w ork bandwidth 500 MB/s 500 MB/s up to 250 MB/s

P eak P erformance 3 TFLOPS 2.6 TFLOPS unlimited

Figure 5.2: T ec hnical sp eci�cations of di�eren t parallel mac hines.

The main adv an tage of Lin ux clusters is the lo w price of standard PC comp onen ts. It

is v ery extendable b ecause there is no limit in the n um b er of no des used in the cluster. In

principle, y ou only ha v e to add a new computer to the net w ork to increase computational

p o w er. The pro cessors are faster than the ones used for b oth other parallel mac hines.

The adv an tage of b oth, the Cra y/SGI T3E and the IBM RS/6000 SP , is the faster

net w ork. Both commercial systems are limited with resp ect to extendabilit y . Figure 5.2

sho ws some tec hnical sp eci�cations of the three di�eren t parallel mac hines. Altogether,

a Lin ux cluster is the b est w a y to get a great p erformance at a lo w price.

5.2 P arallel Algorithm

T o compute the closed streamlines there are t w o di�eren t tasks. First, w e ha v e to

compute the critical p oin ts in the giv en v ector �eld. The second task is to compute the

closed streamlines b y determining the top ological sk eleton. The next t w o subsections

describ e these tasks in detail.
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5.2.1 P arallel Computing of Critical P oin ts

T o parallelize this algorithm w e ha v e to compute all the critical p oin ts that are presen t

in the v ector �eld, �rst. Since w e only need the data of the cells, i.e. the p osition of

the v ertices and the v ectors at these v ertices, to determine if there exists a critical p oin t

inside the cell and where it is lo cated, w e can transfer these tasks to the v arious clien ts

of the cluster. When the clien ts receiv e the index of a cell they compute the critical

p oin t and return the p osition and its t yp e, if they ha v e found one, to the serv er. All

tasks are con trolled b y a sc heduler whic h is a part of the serv er.

receive task

execute task

send resultreceive result

create task

get next task

spool task

ClientServer
Scheduler

Figure 5.3: Sc heduling of the tasks.

The sc heduling of the tasks w orks as follo ws: the serv er creates one task for eac h

cell con taining the index of this cell and queues it in the sc heduler. The sc heduler itself

c hec ks if there are still tasks left and if there is an y clien t that has �nished its task y et.

If there is more than one clien t without an activ e job, the fastest is c hosen. Then the

next task is sen t to this clien t. The clien t receiv es this task, computes the critical p oin t

and sends it, if it has found one, bac k to the serv er and tells the sc heduler that it has

�nished its job. Since the amoun t of data to con trol the clien ts and transfer the critical

p oin ts bac k to the serv er is v ery lo w, w e can fully b ene�t from the p erformance of eac h

clien t.

5.2.2 Determining Closed Streamlines in P arallel

According to the motiv ation there exist t w o di�eren t approac hes for parallelization. W e

exp erimen ted with b oth approac hes to �nd the b est one. There are discussed in detail

in the follo wing.
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Server

Client2 Client3 ClientN

Dataset Scheduler

Client1
Cache Cache Cache Cache

Figure 5.4: Con�guration of the parallel program.

5.2.2.1 Sub division Approac h

In our �rst approac h ev ery clien t got its data from the serv er. Computing streamlines is

a global task since it is not kno wn whic h region of the v ector �eld this streamline ma y

cross. Therefore it is not p ossible to simply sub divide the whole dataset in to sev eral

regions. If w e w an t to sub divide in to sev eral regions w e ha v e to restart the streamline

in another task if it lea v es suc h a region. This usually results in a p o or load balancing

since it is lik ely that there are regions that are crossed b y only few streamlines. It is

p ossible to switc h regions in a particular task. But again, w e do not kno w if a streamline

crossed exactly that region w e just exc hanged.

Therefore w e tried a di�eren t approac h where eac h request to the dataset on one of

the clien ts results in questioning the serv er using PVM[GBD

+

94 ]. Figure 5.4 sho ws the

con�guration. W e use cac hes to a v oid asking the serv er for the same data rep eatedly . But

due to the slo w net w ork connection and the long start-up time for comm unicating under

PVM the transfer of the data to ok more time than the computation of the streamline

ev en when w e used a GigaBit-connection. As a result the parallel v ersion using suc h a

sub division approac h uses more time than the sequen tial v ersion.

5.2.2.2 T ask Driv en Approac h

After w e ha v e computed all critical p oin ts, w e start streamlines at eac h saddle p oin t in

p ositiv e and negativ e eigendirection with resp ect to the matrix of the linear in terp olan t

and c hec k for closed streamlines while computing the streamlines as previously describ ed.

Computing streamlines is not a lo cal task since the streamlines ma y cross an y region

of the 
o w. Therefore w e do not sub divide the data in to sev eral blo c ks lik e in some

rendering tasks [IA O94]. Our implemen tation uses an approac h where w e create sev eral

tasks eac h of them represen ting the whole computation of one streamline starting at a

giv en p osition. Then w e use the sc heduler to distribute the tasks to the v arious clien ts

of our cluster.

Since the data of the v ector �eld including o ctree and the program �t in to 64 MB
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Server

Client1 Client2 Client3 ClientN

Dataset Scheduler

Dataset Dataset DatasetDataset

Figure 5.5: Con�guration of the parallel program.

of RAM w e decided to use a con�guration where ev ery clien t loads the whole dataset

in to its o wn memory . This facilitates the fastest p ossible access to the data. Since the

serv er and ev ery clien t load the data at the same time there is no time lost b ecause

otherwise the clien ts w ould simply w ait for the serv er un til it has loaded the dataset.

When dealing with larger datasets w e ha v e to use an out of core metho d whic h will b e

done in the future.

Since w e w an t to spread tasks that represen t the whole computation of one stream-

line, eac h task con tains t w o items: a p oin t where the streamline has to start and the

in tegration direction. The other data that is needed for the computation is already

presen t at eac h clien t b ecause the clien t has loaded the whole dataset y et. Due to the

minimal amoun t of data of eac h task the comm unication cost whic h is pro duced b y

migrating tasks is v ery lo w.

T o distribute the tasks to the v arious clien ts w e use the previously describ ed sc hed-

uler: the serv er determines the start p ositions of the streamline using eac h saddle p oin t

found in the v ector �eld. Then a task con taining this start p osition and the in tegration

direction is created and sp o oled in to the queue of the sc heduler, while the sc heduler

sends the next job to the fastest clien t that has no activ e job. The clien t receiv es this

task, searc hes for closed streamlines and sends it, if it has found one, bac k to the serv er.

Again, the amoun t of data to con trol the clien ts and transfer the closed streamlines

bac k to the serv er is v ery lo w, so that w e can fully b ene�t from the p erformance of eac h

clien t.

5.3 Results

Our algorithm is implemen ted in C++, while the serv er comm unicates with the clien ts

using PVM[GBD

+

94 ]. The di�eren t tasks are encapsulated in C++-classes. This fa-

cilitates that the tasks can transfer themselv es to the clien t on demand and the clien ts

only need to call a metho d to execute the receiv ed task.

T o test the p erformance of our implemen tation w e mainly use t w o di�eren t systems.
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One is a Lin ux cluster consisting of sev en clien ts. Eac h no de is equipp ed with an

AMD Duron 600 or AMD Duron 700 pro cessor and 64 MB of RAM. The serv er is a

m ultipro cessor computer with t w o P en tium I I I 500 pro cessors. The second system is

based on some of our desktop computers with a P en tium I I 350. W e use Lin ux and

normal PC comp onen ts since this is a c heap w a y to get a great p erformance compared

to other parallel computers. In order to get a more heterogeneous con�guration w e mix

b oth systems b y using all Lin ux computers a v ailable in our group for a last p erformance

test.

As a test dataset w e use the same sim ulated dataset as in the previous c hapter. The

v ector �eld has 362 critical p oin ts and for the top ology including closed streamlines

ab out six h undred streamlines ha v e to b e computed.

Pro cessor Floating-p oin t index

P en tium I I 350 2.404

P en tium I I I 500 3.561

AMD A thlon 650 5.163

AMD Duron 600 4.768

AMD Duron 700 5.547

In tel Celeron 800 6.125

AMD Th underbird 1400 11.227

Figure 5.6: Floating-p oin t indices of the di�eren t pro cessors.

T o determine the optimal timing of our algorithm w e used the b enc hmark utilit y

nb ench

1

in order to get a suitable ratio b et w een the sp eeds of the pro cessors. Nb ench is

a p ort to Lin ux/Unix of release 2 of BYTE Magazine's BYTEmark b enc hmark program

2

.

W e computed the 
o ating-p oint index of eac h pro cessor whic h giv es the relativ e sp eed

of the 
oating-p oin t unit compared to an AMD K6-233 pro cessor. The results can b e

found in �gure 5.6. Using these v alues w e computed the 
oating-p oin t index of the whole

parallel mac hine b y summing up the indices corresp onding to the in v olv ed pro cessors

and calculated the optimal run time b y neglecting the comm unication cost b et w een serv er

and clien ts.

Figures 5.7 and 5.8 sho w the timings on the desktop computers. The cluster consists

of up to �v e mac hines. The optimal timings are displa y ed using a dashed line while the

real timings are sho wn b y a solid line. This con�guration is v ery suitable for testing the

scalabilit y of our implemen tation b ecause ev ery computer has iden tical p erformance.

Ob viously , the computation time is halv ed if the n um b er of pro cessors is doubled whic h

indicates a go o d scalabilit y of our implemen tation.

1

h ttp://www.tux.org/~ma y er/lin ux/bmark.h tml

2

h ttp://www.b yte.com/bmark/bmark.h tm
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Figure 5.7: Time needed to compute closed streamlines using P en tium PI I-350 pro ces-

sors displa y ed as graph.

# CPUs Time Optim um

1 612s |

2 306s 306s

3 205s 204s

4 158s 153s

5 134s 122s

Figure 5.8: Time needed to compute closed streamlines using P en tium PI I-350 pro ces-

sors sho wn in a table.

The timings of the algorithm running on our Lin ux cluster with up to sev en clien ts

is displa y ed in �gures 5.9 and 5.10. Again, the optimal timings are displa y ed using a

dashed line while the real timings are sho wn b y a solid line. Since the serv er has t w o

pro cessors there are alw a ys running at least t w o tasks at the same time on this mac hine.

Adding more clien ts to the Lin ux cluster the time needed for the algorithm is reduced

corresp ondingly to the sp eed of its pro cessor. Again, w e can see that w e nearly b ene�t

from the full p erformance of eac h clien t due to the minimal comm unication b et w een

serv er and clien t as can b e seen from the di�erence b et w een the optimal and the real

timings.

In our next test w e also used the Lin ux desktop mac hines in all the o�ces of our

visualization group. This resulted in a parallel mac hine consisting of six P en tium I I-

350, t w o AMD A thlon 650, one dual pro cessor mac hine with t w o P en tium I I I-500, four

AMD Duron 600, and three AMD Duron 700. Altogether, the algorithm used sev en teen
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time
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processors

3018 19 20 21 22 23 24 25 26 27 28 29

Figure 5.9: Time needed to compute closed streamlines using a Lin ux cluster with AMD

Duron 600 and AMD Duron 700 pro cessors displa y ed as graph.

# CPUs Time Optim um

2 224s |

3 138s 134s

4 99s 96s

5 77s 74s

6 63s 61s

7 53s 50s

8 46s 43s

9 39s 37s

17 28s 24s

30 17s 9s

Figure 5.10: Time needed to compute closed streamlines using a Lin ux cluster with

AMD Duron 600 and AMD Duron 700 pro cessors sho wn in a table.

pro cessors and it to ok 28 seconds to compute all closed streamlines that are presen t in

our test dataset. As exp ected, this is faster than using the cluster alone corresp onding to

the sp eed of the pro cessors and sligh tly slo w er than the optimal run time of 24 seconds.

This also tests our implemen tation in a more heterogeneous parallel mac hine due to the

di�eren t sp eeds of the pro cessors. It sho ws that w e can decrease the time needed for

the computation b y adding more pro cessors no matter what sort of mac hine it is.

Then w e also added the Lin ux mac hines in our studen t ro oms for a last test. These

are �v e mac hines equipp ed with an In tel Celeron 800, t w o mac hines with a P en tium

I I I-500, and six with an AMD Th underbird 1400 pro cessor. So w e end up with 30
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pro cessors. Our algorithm needed 17 seconds. Compared to the optimal timing of 9

seconds this is a little bit to o slo w. This is due to the slo w net w ork connection. Because

all computers reside in di�eren t areas of our w orking group and sev eral other pro cesses

suc h as net w ork �le system also use this net w ork w e do not ha v e the full bandwidth

a v ailable. Consequen tly , the comm unication cost is not neglectable an ymore so that the

real and the optimal timings di�er.
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Chapter 6

Closed Streamlines in

Time-Dep enden t Flo ws

When dealing with closed streamlines one question o ccurs: ho w do es a closed streamline

emerge? Inspired b y the b o oks of Abraham and Sha w[AS82 ] [AS83] [AS84] [AS88] w e

visualize the ev olution of a closed streamline in a planar unsteady 
o w. W e use the third

dimension to represen t the time. The ev olution of a closed streamline can b e sho wn as

a tub e shap ed visulization for the closed streamlines in the v arious timesteps.

The singularities are used as a starting p oin t for our in v estigations. Therefore w e

brie
y describ e the trac king of the singularities in the next section. This w ork w as done

b y T rico c he et al. [TSH01]. Then w e sho w ho w to �nd and follo w a closed streamline

o v er time. In the end w e explain the results of our algorithm and explain the limitations

of our metho d.

6.1 T rac king Critical P oin ts

When dealing with time-dep enden t t w o-dimensional 
o ws w e can use the third dimen-

sion to represen t time as describ ed in subsection 2.2.4. F or trac king the closed stream-

lines w e �rst determine the b eha vior of the critical p oin ts. F or a giv en cell, the asso ciated

in terp olan t con tains, for eac h v alue of time t , a single critical p oin t. This is due to the

a�ne linear nature inside the triangles of its restriction to an y time plane. Letting the

time parameter t mo v e from t

i

to t

i +1

, the critical p oin t p osition describ es a 3D curv e.

A detailed description of ho w to �nd the paths of the critical p oin ts can b e found in the

article of T rico c he et al. [TSH01 ].
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Figure 6.1: Closed streamlines found b y the algorithm.

6.2 F ollo wing Closed Streamlines

After trac king the singularities, w e analyze the v ector �eld in discrete timesteps. There

m ust b e a critical p oin t inside eac h closed streamline. Therefore, w e use the critical p oin t

path con taining a Hopf bifurcation as a starting p oin t for our streamline algorithm from

section 4.1 whic h detects the closed streamline if it exists. W e follo w the critical p oin t

path in discrete steps in p ositiv e and negativ e directions starting at the bifurcation.

After w e ha v e found the cell cycle con taining the closed streamline w e �nd the exact

p osition using the P oincar � e-map from section 4.2. As a last test w e ha v e to c hec k if

the closed streamline really surrounds the critical p oin t. This is necessary b ecause the

streamline ma y ha v e ran in to another closed streamline in a totally di�eren t region of the


o w. Ob viously , closed streamlines surrounding the critical p oin t o ccur only in one of

the t w o temp oral directions. W e con tin ue b y stepping forw ard in the temp oral direction

un til the closed streamlines reac h either another bifurcation whic h breaks them up or

the b order of the grid.

Figure 6.1 sho ws the result of this step. Here w e ha v e found the closed streamlines

at v arious timesteps. The closed streamlines are appro ximated b y sev eral line segmen ts.

The paths of the critical p oin ts are also sho wn using the same colors as in the original

pap er [TSH01]. The Hopf bifurcation, where w e started to detect the closed stream-

lines, is mark ed with a y ello w sphere. The di�eren t bifurcation t yp es are describ ed in

section 2.8. In this example the life cycle of the closed streamline is started b y a Hopf

Departmen t of Computer Science, Univ ersit y of Kaiserslautern, German y



Closed Streamlines in Flo w Visualization 67

Figure 6.2: Closed streamlines visualized as a tub e o v er time.

bifurcation and terminated b y a P erio dic Blue Sky in 2D bifurcation.

T o visualize the ev olution of closed streamlines, w e construct tub es from the v arious

closed streamlines similar to the pictures b y Abraham and Sha w [AS88]. W e construct

surfaces consisting of triangles whic h connect the appro ximating line segmen ts of the

closed streamlines. The bifurcation p oin t is connected to the tub e using a parab olic

surface appro ximated with triangles. The result is sho wn in �gure 6.2.

6.3 Results

T o test our metho d, w e ha v e created a syn thetic v ector �eld con taining four critical

p oin ts. The p osition of the critical p oin ts is a function of time, describing closed curv es

in the plane. W e ha v e sampled this v ector �eld on a triangular p oin t set for sev eral

v alues of the time parameter. The rotation of the critical p oin ts (eac h with a sp eci�c

frequency) en tails man y structural c hanges for the top ology . This is v ery in teresting for

our purp ose since all di�eren t t yp es of bifurcations whic h create closed streamlines are

presen t.

Figure 6.3 sho ws the result of our algorithm, where the closed streamlines are sho wn

as red tub es. The upp er one and the one on the righ t are started and terminated b y Hopf
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Figure 6.3: Closed streamlines found in a syn thetic test dataset.

Figure 6.4: Detailed view of a Hopf bifurcation.

bifurcations { sho wn as a y ello w sphere { while the lo w er closed streamline starts at a

Hopf bifurcation and is terminated b y a P erio dic Blue Sky in 2D bifurcation. Since there

is a critical p oin t inside the cell cycle, i.e. the saddle, the 
o w b eha v es totally di�eren t

dep ending on where a streamline passes the saddle. Therefore the exact lo calization

fails when w e are to o close to the critical p oin t.

Figures 6.4 and 6.5 sho w some detailed views of the di�eren t bifurcations. Also some
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Figure 6.5: Detailed view of a P erio dic Blue Sky in 2D bifurcation.

streamlines are dra wn to sho w ho w these streamlines circle around the limit cycle but

nev er cross it. Figure 6.4 is a closed streamline started b y a Hopf bifurcation. The

bifurcation is lo cated in the lo w er left corner. In �gure 6.5 the closed streamline is

started b y a Hopf bifurcation lo cated in the upp er left corner. It gro ws in size un til it is

terminated b y a P erio dic Blue Sky in 2D bifurcation. Consequen tly , the tub e visualizing

the ev olution of the closed streamline do es not get closed.

Another dataset w e used is a sim ulation of a swirling jet with an in
o w in to a steady

medium. The sim ulation uses a cylindrical domain and assumes rotational symmetry , so

that w e are left with a t w o-dimensional v ector �eld on a plane through the cen ter axis of

the cylinder. In this application one is in terested in in v estigating the turbulence of the

v ector �eld and in regions where the 
uid sta ys v ery long. Swirling jets pla y a signi�can t

role in man y com bustion pro cesses. It is imp ortan t to �nd suc h recirculation regions

indicated b y closed instan taneous streamlines. T o a v oid visual clutter w e use only a

part of the dataset for our visualization. Figure 6.6 sho ws the result of our algorithm.

The critical p oin t paths are also sho wn where saddles are colored red, sinks are green,

and sources are visualized using blue color. Ob viously , in regions where only one saddle

p oin t is in v olv ed, w e cannot �nd an y closed streamline due to the t yp es of bifurcations

explained in section 2.8. Most of the closed streamlines emerge at Hopf bifurcations

whic h are mark ed with a y ello w sphere. Therefore, closed streamlines are found where

sources and sinks alternate while time propagates, so that w e are able to iden tify the

regions where the 
uid sta ys v ery long.
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Figure 6.6: Closed streamlines found in a v orticit y dataset.

6.4 Limitations

Due to the unstable con�guration of the homo clinic connections of the p erio dic blue

sky in 2D bifurcation w e actually fail to reac h the bifurcation exactly . Our implemen ta-

tion terminates the tub e represen ting the closed streamline sligh tly to o early . Another

missing feature in this implemen tation is to �nd sev eral closed streamlines around one

critical p oin t. This can b e accomplished b y con tin uing the in tegration pro cess. The

time slice has to b e c hec k ed for closed streamlines again near the last limit cycle that

w as found.
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Chapter 7

Closed Streamlines in 3D V ector

Fields

Closed streamlines can b e found in three dimensional v ector �elds also. F or instance,

the T err estrial Planet Finder Mission of NASA deals with stable manifolds where 3D

p erio dic halo orbits pla y an imp ortan t role. These orbits are nothing else than closed

streamlines in a three dimensional v ector �eld. Figure 7.1 sho ws an example.

Figure 7.1: T errestrial Planet Finder Mission (image courtesy of Ken Museth,

Caltec h[MBL01 ]).

The next section describ es ho w to detect closed streamlines in three dimensional

v ector �elds. It sho ws the di�erences b et w een the t w o dimensional case b oth in theory

and the algorithm itself. In the end w e presen t the results of the algorithm.
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Figure 7.2: Bac kw ard in tegrated surface.

7.1 Detecting Closed Streamlines in 3D V ector

Fields

Although the principle to detect closed streamlines in a three dimensional v ector �eld

is similar to the t w o dimensional case there are some di�erences. W e will describ e the

theoretical and algorithmic di�erences and similarities in the next t w o subsections.

7.1.1 Theory

The data is giv en on a tetrahedral grid. But the principle should w ork on other cell

t yp es as w ell. The detection of a cell cycle w orks the same as in de�nition 4.1.2. Of

course, the cells are three dimensional in this case. T o c hec k if w e can lea v e the cell

cycle w e ha v e to consider ev ery bac kw ard in tegrated streamline starting at an arbitrary

p oin t on a face of the b oundary of the cell cycle. Lo oking at the edges of a face w e can

see directly that it is not su�cien t to just in tegrate streamlines bac kw ards. Figure 7.2

sho ws an example. W e in tegrated a streamsurface bac kw ards starting at an edge of

the cell cycle. The streamlines starting at the v ertices of that edge lea v e the cell cycle

earlier than the complete surface. So it ma y b e p ossible that a part of the streamsurface

sta ys inside the cell cycle although the bac kw ard in tegrated streamlines starting at the

v ertices lea v e it. Consequen tly , w e ha v e to �nd another de�nition for exits.
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De�nition 7.1.1 (Potential Exit Edges)

L et C b e a c el l cycle in a given tetr ahe dr al grid G as in De�nition 4.1.2. Then we c al l

every e dge at the b oundary of the c el l cycle a p otential exit e dge . A nalo gue to the two

dimensional c ase we de�ne a line on a b oundary fac e wher e the ve ctor �eld is tangential

to the fac e as a p otential exit e dge also.

Due to the fact that w e use linear in terp olation inside the tetrahedrons w e can sho w

that there will b e at least a straigh t line on the face where the v ector �eld is tangen tial

to the face or the whole face is tangen tial to the v ector �eld.

The or em 7.1.2

L et F b e a triangular fac e of a tetr ahe dr al. The ve ctors v

1

, v

2

, and v

3

ar e the ve ctor

values and p

1

, p

2

, and p

3

the p ositions of the vertic es of the fac e F . The ve ctors inside

the tetr ahe dr on ar e interp olate d line arly. Then al l ve ctors that ar e tangential to the fac e

ar e on a str aight line or al l ve ctors inside the fac e ar e tangential.

Pr o of:

Let v

1

, v

2

, v

3

, p

1

, p

2

, and p

3

the v ectors of resp ectiv ely p ositions at the v ertices of the

face F . Let n b e an orthogonal v ector to the face F . W e can in terp olate a v ector inside

the face F b y using the barycen tric co ordinates:

v = � � v

1

+ � � v

2

+ 
 � v

3

Ev ery v ector that is tangen tial to the face F is orthogonal to the v ector n . Therefore:

n � v = � n � v

1

+ � n � v

2

+ 
 n � v

3

A prop ert y of the barycen tric co ordinates is that they sum up to 1:

� + � + 
 = 1

So w e ha v e t w o equations and three v ariables. This leads to an at least one dimensional

solution of linear equations if there is an y solution. o

R emark 7.1.3

Be c ause of the or em 7.1.2 we do not ne e d to c onsider any isolate d p oint on a fac e wher e

the ve ctor �eld is tangential to the fac e b e c ause this c annot o c cur.

When dealing with edges as exits w e ha v e to compute a streamsurface instead of

streamlines to consider ev ery p oin t on an exit edge. This leads us to the follo wing

notation.

Notation 7.1.4 (Backwar d inte gr ate d str e amsurfac e)

We use the term b ackwar d inte gr ate d str e amsurfac e to describ e the str e amsurfac e

we inte gr ate by inverting the ve ctors of the ve ctor �eld starting at a p otential exit e dge

in or der to validate this exit e dge.
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Analogue to de�nition 4.1.5 w e de�ne r e al exit e dges .

De�nition 7.1.5 (R e al exit e dge)

L et E b e a p otential exit e dge of a given c el l cycle C as in de�nition 7.1.1. If the

b ackwar d inte gr ate d str e amsurfac e do es not completely le ave the c el l cycle after one ful l

turn thr ough C then this e dge is c al le d a r e al exit e dge .

F or the bac kw ard in tegrated streamsurface w e use a simpli�ed v ersion of the stream-

surface algorithm in tro duced b y Hultquist [Hul92 ]. Since w e do not need a triangulation

of the surface w e only ha v e to pro cess the in tegration step of that algorithm. Initially ,

w e start the bac kw ard in tegration at the v ertices of the edge. If the distance b et w een

these t w o bac kw ard in tegrations is greater than a sp ecial error limit w e start a new

bac kw ard in tegration in b et w een. This con tin ues with the t w o neigh b oring in tegration

pro cesses un til w e ha v e created an appro ximation of the streamsurface that resp ects the

giv en error limit.

Figure 7.3: Bac kw ard in tegration in one cell.

The in tegration stops if the whole streamsurface lea v es the cell cycle or if w e ha v e

completed one full turn through the cell cycle. But to construct the surface prop erly

w e ma y ha v e to con tin ue a bac kw ard in tegration pro cess across the b oundary of the cell

cycle. This is due to the fact that some part of the streamsurface is still inside the cell

but the bac kw ard in tegrated streamline has already left it. Figure 7.3 sho ws a simpli�ed

example. Both streamlines at the left and righ t edge of the surface lea v e the cell, in fact

they lea v e righ t after they started. But the in tegration pro cess m ust b e con tin ued un til

the whole surface, created inside the cell b y these t w o streamlines, lea v es the cell.
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With these de�nitions and motiv ations w e can form ulate the main theorem for our

algorithm:

The or em 7.1.6

L et C b e a c el l cycle as in de�nition 4.1.2 with no singularity inside and E the set of

p otential exit e dges. If ther e is no r e al exit e dge among the p otential exit e dges E or

ther e ar e no p otential exit e dges at al l then ther e exists a close d str e amline inside the

c el l cycle.

Pr o of: (Sketch)

Let C b e a cell cycle with no real exit edges. Ev ery bac kw ard in tegrated streamsurface

lea v es the cell cycle C completely . As in the 2D case it is ob vious that w e cannot lea v e

the cell cycle if ev ery bac kw ard in tegration starting at an arbitrary p oin t on a face of

the b oundary of the cell cycle C lea v es the cell cycle. So w e ha v e to pro v e that the

actually in tegrated streamline cannot lea v e the cell cycle C .

W e lo ok at eac h face of the b oundary of the cell cycle C . Let Q b e an arbitrary

p oin t on a face F of the b oundary of the cell cycle C . Let us assume that the bac kw ard

in tegrated streamline starting at Q con v erges to the actually in v estigated streamline.

W e ha v e to sho w that this is a con tradiction.

First case: The edges of face F are exit edges and there is no p oin t on F where the

v ector �eld is tangen tial to F .

F rom a top ological p oin t of view the streamsurfaces starting at all edges

of F build a tub e and lea v e the cell cycle. Since the bac kw ard in tegrated

streamline starting at Q con v erges to the actually in v estigated streamline

it do es not lea v e the cell cycle. Consequen tly , it has to cross the tub e

built b y the streamsurfaces. This con tradicts theorem 2.1.8 b ecause

streamlines cannot cross eac h other and therefore a streamline cannot

cross a streamsurface.

Second case: There is a p oten tial exit edge e on the face F that is not a part of the

b oundary of F .

Ob viously , the p oten tial exit edge e divides the face F in to t w o parts. In

one part there is out
o w out of the cell cycle C while at the other part

there is in
o w in to C . W e do not need to consider the part with out
o w

an y further b ecause ev ery bac kw ard in tegrated streamline starting at a

p oin t of that part immediately lea v es the cell cycle C .

The bac kw ard in tegrated surface starting at the p oten tial exit edge e and

parts of the bac kw ard in tegrated streamsurfaces starting at the b oundary

edges of the face F build a tub e again from a top ological p oin t of view.

Consequen tly , the bac kw ard in tegrated streamline starting at Q has to

lea v e the cell cycle C .

Departmen t of Computer Science, Univ ersit y of Kaiserslautern, German y



76 Closed Streamlines in 3D V ector Fields

W e ha v e sho wn that the bac kw ard in tegrated streamline starting at the p oin t Q has

to lea v e the cell cycle also. Since there is no bac kw ard in tegrated streamline con v erging

to the actually in v estigated streamline at all, the streamline will nev er lea v e the cell

cycle. o

7.1.2 Algorithm

With theorem 7.1.6 w e are able to describ e our algorithm in detail. It is quite similar

to the t w o dimensional case and mainly consists of three di�eren t states:

Ê streamline in tegration: iden tifying one cell c hange after the other, c hec k at eac h

cell if w e reac hed a cell cycle.

Ë c hec king for exits: going bac kw ards through the crossed cells and lo oking for

p oten tial exit edges.

Ì v alidating exit: in tegrating bac kw ards a streamsurface from p oten tial exit edges

through the whole cell cycle.

Figure 7.4: Closed streamline including cell cycle and bac kw ard in tegrations.
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Figure 7.4 sho ws an example of our bac kw ard in tegration step. There, also the closed

streamline and the cell cycle is sho wn. Ev ery bac kw ard in tegrated streamsurface lea v es

the cell cycle. According to theorem 7.1.6, there exists a closed streamline inside this

cell cycle. Then w e can �nd the exact lo cation b y con tin uing the in tegration pro cess of

the streamline that w e actually in v estigate un til the di�erence b et w een t w o successiv e

turns is small enough. This n umerical criterion is su�cien t in this case since w e ha v e

sho wn that the streamline will nev er lea v e the cell cycle.

7.2 Results

Figure 7.5: Symmetric t w o dimensional v ector �eld.

T o test our implemen tation w e created a syn thetic dataset whic h includes one closed

streamline. W e �rst pro duced a t w o dimensional v ector �eld. Figure 7.5 sho ws this

v ector �eld. T o get an idea of the structure a hedgehog visualization is included. The

v ector �eld con tains a saddle singularit y in the cen ter and t w o symmetrical sinks. The

top ological sk eleton is sho wn also. T o get a three dimensional 
o w w e rotated the t w o

dimensional v ector �eld around the y-axis. Due to the symmetrical arrangemen t of the

sinks this v ector �eld includes exactly one closed streamline. Figure 7.6 sho ws the result

of our algorithm. T o visualize a little bit of the surrounding 
o w sev eral streamlines are
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Figure 7.6: Closed streamline in a three dimensional v ector �eld.

dra wn. Ob viously , ev ery streamline is attracted b y the closed streamline. After a short

while the streamline spirals around the closed streamline un til it completely merges in to

it. W e can see in this example that the closed streamline in this three dimensional 
o w

acts lik e a sink.

Figure 7.7 sho ws the same closed streamline with t w o streamsurfaces. The stream-

surfaces are { just lik e the streamlines { attracted b y the closed streamline. The stream-

surface gets smaller and smaller while it spirals around the closed streamline. After a

few turns around the closed streamline it is only sligh tly wider then a streamline and

�nally it totally merges with the closed streamline. W e used a rather arbitrary color
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Figure 7.7: Limit cycle in a 3D v ector �eld with streamsurfaces.

sc heme for the surface to enhance the three dimensional impression. Both �gures 7.6

and 7.7 indicate the p oten tial of this algorithm.
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