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Closed Streamlines in Flow Visualization vOne thing I have learned in a long life: that all our s
ien
e,measured against reality, is primitive and 
hildlike and yet itis the most pre
ious thing we have.Albert Einstein (1879{1955)

A
knowledgmentsI want to thank all the people who helped me to a

omplish this work during the lastthree and a half years. I thank my advisor, Prof. Dr. Hans Hagen, for giving me theopportunity to work on this interesting topi
 and letting me join international meetingsand 
onferen
es in order to get in tou
h with other s
ientists. I also thank Dr. GerikS
heuermann for providing me with some starting points and helping me throughoutthis work. Without him this work would not have been possible.During my studies I was glad to have su
h helpful 
olleagues like Holger Burba
hand Xavier Tri
o
he. I also thank all the members of the proje
t FAnToM who providedthe basis for my implementations. A spe
ial thank goes to Mady Gruys for 
reating apositive atmosphere and helping me in all non-s
ienti�
 problems. Additionally, I wantto thank Inga S
heler for proof reading this work and helping me to get it printed. Lastbut not least I would like to thank my parents who always supported me over the years.Part of this work was funded by DFG (Deuts
he Fors
hungsgemeins
haft) and LandRheinland-Pfalz, Germany.

Department of Computer S
ien
e, University of Kaiserslautern, Germany



vi

Department of Computer S
ien
e, University of Kaiserslautern, Germany



Closed Streamlines in Flow Visualization vii

Abstra
tVe
tor �elds o

ur in many of the problems in s
ien
e and engineering. In 
ombustionpro
esses, for instan
e, ve
tor �elds des
ribe the 
ow of the gas. This pro
ess 
an beenhan
ed using ve
tor �eld visualization te
hniques. Also, wind tunnel experiments 
anbe analyzed. An example is the design of an air wing. The wing 
an be optimized to
reate a smoother 
ow around it. Ve
tor �eld visualization methods help the engineerto dete
t 
riti
al features of the 
ow. Consequently, feature dete
tion methods gainedgreat importan
e during the last years.Topologi
al methods are often used to visualize ve
tor �elds be
ause they 
learlydepi
t the stru
ture of the ve
tor �eld. In previous publi
ations about topologi
almethods 
losed streamlines are negle
ted. Sin
e 
losed streamlines 
an behave in exa
tlythe same way as sour
es and sinks they are an important feature that 
annot be ignoredanymore.To a

omplish this, this work 
on
entrates on dete
ting this topologi
al feature. Weintrodu
e a new algorithm that �nds 
losed streamlines in ve
tor �elds that are givenon a grid where the ve
tors are interpolated linearly. We identify regions that 
annotbe left by a streamline. A

ording to the Poin
ar�e-Bendixson theorem there is a 
losedstreamline in su
h a region if it does not 
ontain any 
riti
al point. Then we identifythe exa
t lo
ation using the Poin
ar�e map. In 
ontrast to other algorithms, this methoddoes not presume the existen
e of a 
losed streamline. Consequently, this algorithm isable to really dete
t 
losed streamlines inside the ve
tor �eld. A parallel version of thisalgorithm is also des
ribed to redu
e 
omputational time. The implementation s
alesre
ipro
ally proportional to the CPU speed of the used 
omputers.In order to get a better understanding of 
losed streamlines we sket
h the wholeevolution of a 
losed streamline in time dependent 
ows. This results in a tube shapedvisualization representing the 
losed streamline over time. The emerging and vanishingof the 
losed streamline 
an be easily investigated to get more insight into this feature.In 
ombustion pro
esses 
losed streamlines in a three dimensional 
ow are a hint forre
ir
ulation zones. These zones des
ribe regions inside the 
ow where the gas staysquite long. This is ne
essary for the gas to 
ompletely burn. Therefore, we also showhow to dete
t this important feature in three dimensional ve
tor �elds.Department of Computer S
ien
e, University of Kaiserslautern, Germany



viiiKurzfassungVektorfelder treten im Zusammenhang mit sehr vielen wissens
haftli
hen und inge-nieurm�a�igen Problemen auf. Bei Verbrennungsvorg�angen beispielsweise bes
hreibenVektorfelder den Verlauf des einstr�omenden Gases. Dieser Vorgang kann mit Hilfe vonTe
hniken der Vektorfeldvisualisierung verbessert werden. Ebenso lassen si
h Wind-kanalexperimente analysieren. Als Beispiel sei das Design einer Trag
�a
he genannt. DerFl�ugel kann optimiert werden, um eine bessere Umstr�omung zu errei
hen. Methodender Vektorfeldvisualisierung helfen dem Ingenieur, kritis
he Eigens
haften der Str�omungzu erkennen. Dementspre
hend erlangten Methoden, die Merkmale der Str�omungaufzeigen, in den letzten Jahren immer gr�o�ere Bedeutung.Topologis
he Methoden werden h�au�g eingesetzt, um Vektorfelder zu visualisieren,da sie sehr deutli
h die Struktur des Vektorfeldes aufzeigen. In fr�uheren Ver�o�entli
hun-gen �uber topologis
he Methoden wurden ges
hlossene Stromlinien bisher verna
hl�assigt.Da ges
hlossene Stromlinien si
h jedo
h genauso verhalten k�onnen wie Quellen undSenken, stellen sie ein wi
htiges Merkmal dar, das ni
ht weiter ignoriert werden kann.Um diesen Mangel zu beseitigen, befasst si
h die Arbeit mit dem AuÆnden diesertopologis
hen Eigens
haft. Es wird ein neuartiger Algorithmus vorgestellt, der in derLage ist, ges
hlossene Stromlinien in Vektorfeldern, die auf einem Gitter de�niert sindund linear interpoliert werden, zu �nden. Dazu wird na
h Berei
hen gesu
ht, die voneiner Stromlinie ni
ht mehr verlassen werden k�onnen. Gem�a� dem Poin
ar�e-Bendixson-Theorem be�ndet si
h eine ges
hlossene Stromlinie in diesem Berei
h, falls er keinekritis
hen Punkte enth�alt. Ans
hlie�end wird die genaue Position mit Hilfe der Poin
ar�e-Abbildung bestimmt. Im Gegensatz zu anderen Algorithmen setzt diese Methode ni
htdie Existenz einer ges
hlossenen Stromlinie voraus. Daher ist das hier vorgestellte Ver-fahren in der Lage, ges
hlossene Stromlinien au
h tats�a
hli
h aufzu�nden. Eine Paral-lelisierung dieses Algorithmus wird ebenfalls bes
hrieben, um die ben�otigte Re
henzeitzu reduzieren. Die Laufzeit der Implementation ist dabei umgekehrt proportional zurCPU-Ges
hwindigkeit der verwendeten Computer.Um ein besseres Verst�andnis f�ur ges
hlossene Stromlinien zu bekommen, wird dergesamte Lebenszyklus ges
hlossener Stromlinien in zeitabh�angigen Vektorfeldern aufge-zeigt. Dies resultiert in einer r�ohrenf�ormigen Darstellung, die ges
hlossene Stromlinien�uber die Zeit repr�asentiert. Die Entstehung und das Vers
hwinden der ges
hlossenenStromlinie kann einfa
h untersu
ht werden, um mehr Einbli
k in dieses Merkmal zuerhalten.Bei Verbrennungsvorg�angen sind ges
hlossene Stromlinien in dreidimensionalenStr�omungen ein Indiz f�ur Rezirkulationsberei
he. Diese Berei
he bes
hreiben Regioneninnerhalb der Str�omung, in denen si
h das Gas relativ lange aufh�alt. Dies ist notwendig,damit das Gas vollst�andig verbrennen kann. Aus diesem Grund wird zudem aufgezeigt,wie dieses wi
htige Merkmal in dreidimensionalen Vektorfeldern gefunden werden kann.Department of Computer S
ien
e, University of Kaiserslautern, Germany
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Closed Streamlines in Flow Visualization 1
Chapter 1Introdu
tionMany of the problems in natural s
ien
e and engineering involve ve
tor �elds. Fluid
ows, ele
tri
 and magneti
 �elds are nearly everywhere, therefore measurements andsimulations of ve
tor �elds are in
reasing dramati
ally. As with other data, analysis ismu
h slower and still needs improvement. Mathemati
al methods together with visu-alization 
an provide help in this situation. In most 
ases, the s
ientist or engineer isinterested in integral 
urves of the ve
tor �eld like streamlines in 
uid 
ows or mag-neti
 �eld lines. The qualitative nature of these 
urves 
an be studied with topologi
almethods developed originally for dynami
al systems. Espe
ially in the area of 
uidme
hani
s, topologi
al analysis and visualization have been used with su

ess [GLL91℄,[HH91℄, [Ken98℄, [SHJK00℄.In visualization, topologi
al methods mostly are not able to pre
isely show the exis-ten
e of 
losed streamlines. Only stopping 
riteria like elapsed time, number of integra-tion steps or the length of the streamline are used to prevent the algorithm from runningforever. But 
losed streamlines play an important role in topologi
al methods be
ausethey 
an a
t in the same way as sour
es or sinks; they 
an attra
t or repel the 
ow.Therefore there is a strong need for an algorithm that is able to dete
t this importanttopologi
al feature.Figure 1.1 shows an example of a 
losed streamline. The streamline is started in the
enter of the �gure. After a short while the integrated streamline ends up in a loop sothat the streamline 
y
les around and around. Consequently, the 
omputation normallywould not terminate without dete
ting this situation or using an impre
ise stopping
riterion like the ones mentioned before. The disadvantage with these impre
ise stopping
riteria is that we 
annot distinguish between a streamline that spirals very slowly anda streamline that runs into a 
losed streamline. Therefore, the streamline is stoppedto early in some 
ases. If we were able to really dete
t whether we end up in a 
losedstreamline or not we 
an 
ompute the whole streamline. In this 
ase we additionallya

elerate the integration pro
ess be
ause we do not 
y
le around the 
losed streamlineanymore until the stopping 
riterion is ful�lled.Department of Computer S
ien
e, University of Kaiserslautern, Germany



2 Introdu
tion

Figure 1.1: A 
losed streamline.There are several appli
ations for an algorithm that dete
ts 
losed streamlines. In
ombustion pro
esses, a spe
ial amount of time is ne
essary for the gas to burn 
om-pletely. If we have a swirling jet where the gas is inje
ted we have an in
ow into a steadymedium. Consequently, we get regions with high turbulen
e in the resulting 
ow. Tolo
ate areas where the gas stays very long we 
an use the 
losed streamlines in the 
owindi
ating those areas whi
h are 
alled re
ir
ulation zones [Hai99℄.To illustrate the situation we 
omputed a visualization of a simulated in
ow intoa swirling jet. Figure 1.2 depi
ts the result. The 
ow is shown by a LIC image[CL93℄[SH95℄[HS98℄. This method distorts a white noise image by smearing in thedire
tion of the 
ow. The in
ow 
an be 
learly identi�ed in the middle of the pi
ture.The turbulent areas at the top and the bottom are emphasized also. Several 
losedstreamlines 
an be found in these regions of the ve
tor �eld drawn in white. Conse-quently, many re
ir
ulation zones 
an be identi�ed by this method where 
han
es aregood that the gas is able to 
ompletely burn.Another appli
ation is the sear
h for the eye of hurri
anes [WFL+00℄. A hurri
ane
onsists of mainly two regions: the outer region where it has a great and destru
tivepower with a 
ir
ulating 
ow and the inner area where almost nothing happens. If weproje
t the 
ow that des
ribes the hurri
ane onto a horizontal plane these two regionsare divided by a 
losed streamline. To lo
ate this boundary we only have to 
omputethe 
losed streamline of that ve
tor �eld. As a result we have identi�ed the eye of thehurri
ane.After des
ribing the theoreti
al ba
kground in the se
ond 
hapter whi
h is ne
essaryfor the understanding of the new algorithms that are des
ribed in this thesis, we explainthe algorithm for dete
ting 
losed streamlines in a two dimensional ve
tor �eld in thethird 
hapter. This algorithm 
he
ks during the integration pro
ess if the streamlinerea
hes an area that 
annot be left. In su
h a 
ase, we have proven a

ording to theDepartment of Computer S
ien
e, University of Kaiserslautern, Germany



Closed Streamlines in Flow Visualization 3

Figure 1.2: Re
ir
ulation zones in a swirling jet simulation.Poin
ar�e-Bendixson theorem that there exists a 
losed streamline in that area. To lo
atethe exa
t position of this 
losed streamline the Poin
ar�e map is used.Sin
e it is ne
essary to 
ompute many streamlines to �nd every 
losed streamline in agiven dataset, we show a parallelization of our algorithm that dete
ts 
losed streamlinesin 
hapter four. The streamlines that have to be 
omputed are spread as di�erent tasksto the various 
lients in a Linux 
luster. If a 
losed streamline is dete
ted the 
lient sendsba
k a visualization of that 
losed streamline to the server. The server displays all these
losed streamlines. This fa
ilitates a faster 
omputation of all 
losed streamlines. Thea

eleration 
orresponds to the overall 
omputation power of the whole Linux 
luster.Inspired by the books of Abraham and Shaw [AS82℄[AS83℄[AS84℄[AS88℄ we inves-tigate the 
reation or vanishing of 
losed streamlines in 
hapter �ve. A ve
tor �eldis interpolated over time so that 
losed streamlines 
an emerge in spe
ial situations.Department of Computer S
ien
e, University of Kaiserslautern, Germany



4 Introdu
tionThese situations are 
alled bifur
ations. The 
losed streamlines are followed over time.This results in a tube shaped visualization that 
learly shows the evolution of the whole
losed streamline.We also want to dete
t 
losed streamlines in a three dimensional ve
tor �eld. Al-though the prin
iple is quite similar to the two dimensional 
ase there exist some essentialdi�eren
es. The test if a streamline is able to leave a region is far more diÆ
ult in thethree dimensional 
ase. This is des
ribed in detail in 
hapter seven.

Department of Computer S
ien
e, University of Kaiserslautern, Germany



Closed Streamlines in Flow Visualization 5
Chapter 2Theory of Ve
tor FieldsThis 
hapter introdu
es the fundamental theory whi
h is needed for the following 
hap-ters. We mainly follow the des
ription of Hirs
h and Smale [HS74℄. Other des
riptions
an be found in [Tri02℄[GH83℄[Gu
00℄.2.1 Fundamental TheoryIn order to talk about ve
tor �elds we need a pre
ise de�nition of what a ve
tor �elda
tual is.De�nition 2.1.1 (Ve
tor �eld)Let W � Rn be an open subset. An n-dimensional ve
tor �eld v is de�ned as a mapv : W ! Rn :As we 
an see from de�nition 2.1.1 a ve
tor �eld gives us an n-dimensional ve
tor atan arbitrary position inside W . Ve
tor �elds o

ur in many appli
ations. For instan
e,we may have a 
ow in a wind tunnel experiment. This 
ow 
an be des
ribed by adynami
al system. If we have a massless parti
le lo
ated at a position x inside the
ow, a dynami
al system tells us where this parti
le is after a given time t. Thereforea dynami
al system should be 
ontinuously di�erentiable or at least 
ontinuous and
ontinuously di�erentiable in t.De�nition 2.1.2 (Dynami
al system)Let W � Rn be an open subset. A dynami
al system or 
ow is a C1 map R �W �!W , where � ful�lls the following 
onditions:1. �(0) is the identity2. �(t) Æ �(s) = �(t+ s) for all t; s 2 RDepartment of Computer S
ien
e, University of Kaiserslautern, Germany



6 Theory of Ve
tor FieldsWe also write �(t; x) = �t(x).There is a dire
t 
oheren
e between a dynami
al system and a ve
tor �eld shown bythe next remark.Remark 2.1.3Let W � Rn be an open subset and � a dynami
al system. Then there exists a ve
tor�eld v : W 7! Rn that satis�es v(x) = ddt�t(x)��t=0 :Thus, if x0 2 W , v(x0) is the tangent ve
tor to the 
urve de�ned by t ! �t(x0) att = 0. From another point of view we 
an start with a given ve
tor �eld v. With a givenpoint x0 2 W , this leads us to the Cau
hy problem.De�nition 2.1.4 (Cau
hy problem)Let v be a ve
tor �eld as in de�nition 2.1.1 and x0 2 W an arbitrary point. Then theCau
hy problem is de�ned by the di�erential equationddtx(t) = v(x(t))with the so 
alled initial 
ondition x(0) = x0.Then the dynami
al system � satisfying the equation in remark 2.1.3 gives us thesolution 
urve x(t) = �t(x) for the Cau
hy problem.Remark 2.1.5The solution 
urve is also referred to as a streamline, an integral 
urve, a traje
-tory, or an orbit.
v(x )

x(t)
x  = x(t )0

0

0

Figure 2.1: A solution 
urve is always tangential to the de�ning ve
tor �eld.Department of Computer S
ien
e, University of Kaiserslautern, Germany



Closed Streamlines in Flow Visualization 7From a geometri
al point of view the traje
tory x(t) is a 
urve whi
h is alwaystangential to the ve
tor �eld v. This means that ddtx(t) equals v(x(t)) as shown in�gure 2.1. For every point x0 2 W there exists a unique solution 
urve whi
h is shownby the next theorem. But we need a short de�nition �rst.De�nition 2.1.6 (Lips
hitz)Let W � Rn be an open subset. Let further v : W ! Rn be a ve
tor �eld as inde�nition 2.1.1. The ve
tor �eld v is said to be Lips
hitz on W if there exists a
onstant K su
h that jv(x)� v(y)j � Kjx� yjfor all x; y 2 W . The 
onstant K is 
alled Lips
hitz 
onstant for v.Theorem 2.1.7 (Existen
e and uniqueness)Let v be a ve
tor �eld as in de�nition 2.1.1 whi
h is Lips
hitz and x0 2 W an arbitrarypoint. Then there exists an a > 0 and a unique solutionx : (�a; a)! Wof the Cau
hy problem that satis�es the initial 
ondition x(0) = x0.Proof:See [HS74℄, pages 162 through 167. ❏It follows dire
tly from this theorem that streamlines 
annot 
ross ea
h other due tothe uniqueness of solution 
urves.Corollary 2.1.8 (Crossing streamlines)Let v be a ve
tor �eld as in de�nition 2.1.1 and x0; y0 2 W two arbitrary points withx0 6= y0. Let further x(t) and y(t) be the solution 
urves with initial 
onditions x(0) = x0respe
tively y(0) = y0. Unless these two solution 
urves are not identi
al they do notinterse
t.Proof:Let x and y be two interse
ting streamlines whi
h are not identi
al. Let further p 2 Wbe the interse
tion point. Then there exist t1; t2 2 R with x(t1) = y(t2) = p. Then thereare two streamlines starting at point p whi
h 
ontradi
ts to theorem 2.1.7. ❏This 
orollary is of great importan
e sin
e it shows that two di�erent streamlineswill never interse
t. This feature will be exploited by our algorithm that dete
ts 
losedstreamlines.De�nition 2.1.9 (Phase portrait)Let v be a ve
tor �eld as in de�nition 2.1.1 and � the dynami
al system asso
iated to v.Then the family of all solution 
urves represents the phase portrait of the dynami
alsystem �. Department of Computer S
ien
e, University of Kaiserslautern, Germany



8 Theory of Ve
tor FieldsIt is also possible to investigate ve
tor �elds over time. Therefore we de�ne timedependent ve
tor �elds.De�nition 2.1.10 (Time dependent ve
tor �eld)Let W � Rn be an open subset. An n-dimensional time dependent ve
tor �eld vis de�ned as a map v : R �W ! Rn(t; x) 7! v(x)where t is the time parameter.2.2 Data Stru
turesIn most appli
ations in S
ienti�
 Visualization the data is not given as a 
losed formsolution. The same holds for ve
tor �elds. Usually, the ve
tor �elds result from asimulation or an experiment where the ve
tors are measured. In su
h a 
ase, the ve
torsare given at only some points of the domain of the Eu
lidean spa
e. These points arethen 
onne
ted by a grid. A spe
ial interpolation 
omputes the ve
tors inside ea
h 
ellof the grid. In this 
hapter we restri
t ourselves to the few types of grids that we usedin our algorithms in this se
tion.2.2.1 Triangular Grids

Figure 2.2: Triangular grid.A very popular two dimensional grid type is the triangular grid. Figure 2.2 showsan example for su
h a grid. This grid type fa
ilitates to 
onne
t an arbitrary point set.To get the ve
tors inside a 
ell we use an interpolation s
heme based on bary
entri
Department of Computer S
ien
e, University of Kaiserslautern, Germany
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Figure 2.3: Bary
entri
 
oordinates.
oordinates. Figure 2.3 explains the 
on�guration. Let p be the point where we wantto interpolate the ve
tor and p0, p1, and p2 are the verti
es of the triangle.The bary
entri
 
oordinates b0, b1, and b2 des
ribe the distan
es between the pointpi and the edge whi
h is opposite to the vertex with the same index. For the bary
entri

oordinates the equation P2i=0 bi = 1 holds. The point p 
an be expressed in thefollowing way: p = 2Xi=0 bi � pi :Let v(pi) be the ve
tors at the verti
es of the triangle. Then we 
an interpolate theve
tor v(p) at the point p in the same way:v(p) = 2Xi=0 bi � v(pi) :To 
ompute the zeros inside the triangle we need to solve the following linear equa-tion: 2Xi=0 bi � v(pi) = 0 :Unless this system is degenerated, the solution is unique. Consequently, we get at mostone zero depending on whether the solution point lies inside the triangle or not.Department of Computer S
ien
e, University of Kaiserslautern, Germany



10 Theory of Ve
tor Fields2.2.2 Quadrilateral Grids

(a) Re
tilinear grid. (b) Curvilinear grid.Figure 2.4: Quadrilateral grids.There exist two di�erent types of quadrilateral grids. The �rst one is the re
tilineargrid. There every 
ell is a re
tangle. The edges of the 
ells are orthogonal as shownin �gure 2.4a. The other type is the 
urvilinear grid. Here the boundary between the
ells is a 
urve 
onsisting of points 
onne
ted by straight lines. The boundary of morethan one 
ell does not need to be a straight line anymore as 
an be seen in �gure 2.4b.If we interpolate in su
h a 
ell we need to map it to a re
tangular 
ell. This map � isnot linear. Often one speaks of mapping from physi
al spa
e into 
omputational spa
e.Usually, a numeri
al method is used to do this mapping. Consequently, we 
an restri
tourselves to the re
tangular 
ase when explaining interpolation in this 
ase.
p

pp

p

ps

r

2

0 1

3

Figure 2.5: Lo
al 
oordinates inside a re
tangle.We interpolate bilinearly inside ea
h 
ell. Therefore, we introdu
e lo
al 
oordinates(r; s) with 0 � s; r � 1 inside the 
ell of the point p where we want to interpolate.Department of Computer S
ien
e, University of Kaiserslautern, Germany



Closed Streamlines in Flow Visualization 11Figure 2.5 explains how this works. The vertex p0 has lo
al 
oordinates (0; 0), thevertex p1 the 
oordinates (1; 0), the vertex p2 
orresponds to (1; 1), while the last vertexp3 is lo
ated at (0; 1). Then we 
an use the following formula for the interpolation:v(p) = (1� r)(1� s) � v(p0) + r(1� s) � v(p1) + rs � v(p2) + (1� r)s � v(p3) :2.2.3 Tetrahedral Grids

Figure 2.6: Tetrahedron.A tetrahedral grid 
onsists of several tetrahedrons as shown in �gure 2.6. Conse-quently, a tetrahedral grid is a three dimensional grid. As with triangular grids anarbitrary point set 
an be 
onne
ted using this grid type. The interpolation s
hemeworks in an analogue way as the triangular 
ase using bary
entri
 
oordinates. Con-sequently, there is at most one zero inside ea
h tetrahedron, also, if the interpolatingve
tor �eld is non-degenerate inside that tetrahedron.2.2.4 Time dependent Data with Prism CellsWhen dealing with time-dependent two-dimensional 
ows we 
an use the third dimen-sion to represent time. We assume the ve
tor �eld is given at time sli
es on a triangulargrid. These time sli
es vi : W ! R2 are 
onne
ted using prism 
ells as shown in�gure 2.7. To interpolate the ve
tors we 
onsider the following mapf : R �W �! R � R2(t; x) 7! v(t; x)where W is the domain represented by the two dimensional grid of the time sli
es. Sin
ewe need 
onsisten
y with the pie
ewise aÆne linear interpolation that would be appliedon a 2D triangulation, we have to ensure that the restri
tion of the 3D interpolantto ea
h time plane is pie
ewise aÆne linear, too. That means that, �xing the timeDepartment of Computer S
ien
e, University of Kaiserslautern, Germany
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tor Fields
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Figure 2.7: Time prism 
ell.
oordinate and taking it as a parameter, the interpolant must be aÆne linear. This isthe reason why we 
hoose the following interpolant inside ea
h prism 
ell.For a given prism 
ell lying between ti and ti+1, let vj(x) = Ajx + bj, j 2 fi; i + 1gbe the linear interpolation 
orresponding to the prism triangle fa
es lying in the planesft = tig and ft = ti+1g respe
tively. Then we de�ne the interpolant over the wholeprism 
ell by linear interpolation over time:v(t; x) = ti+1 � tti+1 � ti vi(x) + t� titi+1 � tivi+1(x)where t 2 [ti; ti+1℄. This formula obviously ensures, for ea
h �xed value of t, that v(x; t)is aÆne linear in x.2.3 Criti
al PointsCriti
al points are from a topologi
al point of view an important part of ve
tor �elds.This spe
ial feature is des
ribed in more detail in this se
tion. We �rst explain thegeneral 
ase and then study the linear 
ase.2.3.1 General CaseWe start with the de�nition of 
riti
al points in the general 
ase. Then we 
lassifydi�erent types of singularities and talk about stability whi
h is ne
essary to a
hieve aDepartment of Computer S
ien
e, University of Kaiserslautern, Germany



Closed Streamlines in Flow Visualization 13meaningful physi
al interpretation of ve
tor �elds.De�nition 2.3.1 (Criti
al point)Let v : W ! Rn be a ve
tor �eld as in de�nition 2.1.1 whi
h is 
ontinuously di�eren-tiable. Let further x0 2 W be a point where v(x) = 0. Then x0 is 
alled a 
riti
alpoint of the ve
tor �eld.Remark 2.3.2There are several di�erent terms for 
riti
al points. They are also known as singular-ities, singular points, zeros, or equilibriums.2.3.1.1 Classi�
ationCriti
al points 
an be 
lassi�ed using the eigenvalues of the derivation of the ve
tor�eld. For instan
e, we 
an identify sinks that purely attra
t the 
ow in the vi
initywhile sour
es repel it purely.De�nition 2.3.3 (Sink)Let v be a ve
tor �eld as in de�nition 2.1.1 whi
h is 
ontinuously di�erentiable and x0a 
riti
al point of v. Let further Dv(x0) be the derivation of the ve
tor �eld v at x0. Ifall eigenvalues of Dv(x0) have negative real parts, x0 is 
alled a sink.The following theorem shows that sinks really have an attra
ting property.Theorem 2.3.4Let v : W ! Rn be a ve
tor �eld and x0 a sink. Let further � be the 
orrespondingdynami
al system. Let us assume the real part of every eigenvalue is less than �
,
 > 0. Then there exists a neighborhood U � W of x0 su
h that1. �t(x) 2 U for all x 2 U , t > 0.2. There is an Eu
lidean norm on Rn su
h thatj�t(x)� x0j � e�t
jx� x0jfor all x 2 U , t � 0.3. For any norm on Rn , there is a 
onstant B > 0 su
h thatj�t(x)� x0j � Be�t
jx� x0jfor all x 2 U , t � 0.Proof:See [HS74℄, pages 181 and 182. ❏Department of Computer S
ien
e, University of Kaiserslautern, Germany



14 Theory of Ve
tor FieldsCorollary 2.3.5Let v, �, and xo be as in the previous theorem. Then there exists a neighborhood U � Wof x0 so that �t(x) 
onverges to x0:�t(x)! x0 as t!1 for all x 2 UIn the same way we 
an de�ne sour
es.De�nition 2.3.6 (Sour
e)Let v be a ve
tor �eld as in de�nition 2.1.1 whi
h is 
ontinuously di�erentiable and x0a 
riti
al point of v. Let further Dv(x0) be the derivation of the ve
tor �eld v at x0. Ifall eigenvalues of Dv(x0) have positive real parts, x0 is 
alled a sour
e.2.3.1.2 StabilitySin
e in 
omputer s
ien
e absolute exa
t 
al
ulation is not possible due to numeri
alerrors we need some sort of stability if we really want to 
lassify 
riti
al points algorith-mi
ally. A 
riti
al point that 
hanges its behavior even when the ve
tor �eld is slightlyperturbed does not have a very signi�
ant meaning in a physi
al sense.
U

1U

x 0

Figure 2.8: A 
riti
al point that is stable.De�nition 2.3.7 (Stable 
riti
al point)Let v : W ! Rn be a ve
tor �eld as in de�nition 2.1.1 whi
h is 
ontinuously di�erentiableand x0 a stable 
riti
al point of v. If for every neighborhood U � W of x0 there is aneighborhood U1 � U of x0 su
h that every streamline x(t) with x(0) 2 U1 is de�ned andx(t) 2 U for all t > 0 then x0 is 
alled a stable 
riti
al point.Figure 2.8 illustrates a stable 
on�guration.Department of Computer S
ien
e, University of Kaiserslautern, Germany



Closed Streamlines in Flow Visualization 15
U

1U

x 0

Figure 2.9: An asymptoti
ally stable 
riti
al point.De�nition 2.3.8 (Asymptoti
ally stable 
riti
al point)Let v, U , and U1 be as in the previous de�nition. If in addition U1 
an be 
hosen sothat limt!1 x(t) = x0 then x0 is 
alled an asymptoti
ally stable 
riti
al point.In �gure 2.9 we sket
h this situation.
U

x 0

Figure 2.10: A 
riti
al point that is unstable.De�nition 2.3.9 (Unstable 
riti
al point)Let v :W ! Rn be a ve
tor �eld as in de�nition 2.1.1 whi
h is 
ontinuously di�erentiableand x0 a stable 
riti
al point of v. We 
all a 
riti
al point that is not stable an unstable
riti
al point. This means that there is a neighborhood U � W of x0 su
h that for everyDepartment of Computer S
ien
e, University of Kaiserslautern, Germany



16 Theory of Ve
tor Fieldsneighborhood U1 � U of x0 there is at least one streamline x(t) starting at x(0) 2 U1whi
h does not 
ompletely lie in U .Figure 2.10 shows an unstable 
riti
al point.
Figure 2.11: A 
riti
al point that is stable but not asymptoti
ally stable.For example, a sink is an asymptoti
ally stable 
riti
al point and therefore stable.An example of a 
riti
al point that is stable but not asymptoti
ally stable is shown in�gure 2.11. All streamlines surround the 
riti
al point ellipti
ally. This 
on�gurationis rather 
riti
al be
ause the slightest perturbation will 
hange the 
riti
al point into asour
e or a sink. Therefore, we want to distinguish between su
h numeri
ally 
riti
alsituations and numeri
ally stable ones.Theorem 2.3.10Let v be a ve
tor �eld as in de�nition 2.1.1 whi
h is 
ontinuously di�erentiable and x0a stable 
riti
al point of v. Then no eigenvalue of Dv(x0) has positive real part.Proof:See [HS74℄, pages 187 and 188. ❏To have a 
ommon term for su
h numeri
ally stable 
on�gurations we use the notionof hyperboli
ity.De�nition 2.3.11 (Hyperboli
 
riti
al point)Let v be a ve
tor �eld as in de�nition 2.1.1 whi
h is 
ontinuously di�erentiable and x0a 
riti
al point of v. If the derivative Dv(x0) has no eigenvalue with real part zero the
riti
al point is 
alled hyperboli
.Corollary 2.3.12A hyperboli
 
riti
al point is either unstable or asymptoti
ally stable.This 
orollary shows that hyperboli
 
riti
al points avoid numeri
ally 
riti
al situa-tions. These points 
an be dete
ted algorithmi
ally sin
e the behavior does not signi�-
antly 
hange if there is a numeri
al error that is small enough.Department of Computer S
ien
e, University of Kaiserslautern, Germany



Closed Streamlines in Flow Visualization 172.3.2 Linear CaseSin
e we use linear or bilinear interpolation in our algorithms we want to analyze thelinear 
ase in more detail. This also gives a better insight into the di�erent types of
riti
al points. Therefore we examine 
riti
al points in linear ve
tor �elds. First of all,we need to de�ne what we exa
tly mean by a linear ve
tor �eld.De�nition 2.3.13 (Linear ve
tor �eld)Let W � Rn be an open subset. A ve
tor �eldv : W ! Rnis 
alled linear, if there exists a linear mapA : W ! Rnand a ve
tor b 2 Rn su
h that v(x) = Ax+ b 8x 2 Wif in addition b = 0 then v is 
alled homogeneous linear.To get a better insight into linear ve
tor �elds we investigate the phase portrait ofthe di�erent types of linear ve
tor �elds. If we restri
t ourselves to the hyperboli
 
asewhere detA 6= 0 the ve
tor b only gives a displa
ement so that we 
an negle
t it in our
onsideration. Nielson [NJ99℄ summarized all di�erent 
ases that are possible. A linearve
tor �eld 
an have at most one 
riti
al point due to the linearity. In order to get thephase portrait we have to solve the Cau
hy problemddtx(t) = Axwith initial 
ondition x(0) = k, k 2 Rn .Lemma 2.3.14Let v be a homogeneous linear ve
tor �eld, whi
h is des
ribed by the matrix A 2Mat(n�n). Then there exists a solution for the di�erential equationddtx(t) = Ax(t) with initial 
ondition x(0) = k 2 Rn (2.1)whi
h is given by: x = etAk with eA = 1Xk=0 Akk! (2.2)Department of Computer S
ien
e, University of Kaiserslautern, Germany



18 Theory of Ve
tor FieldsProof:Compute the derivation ddtx(t):ddtetAk = k � ddtetA = k � AetAsin
e the derivation of etA 
an be 
omputed as follows:ddtetA = limh!0 e(t+h)A � etAh= limh!0 etAehA � etAh= etA limh!0 ehA � Ih= etA � A
❏Let us have a 
loser look at two dimensional linear ve
tor �elds whi
h 
an be de-s
ribed by a matrix A 2 Mat(2 � 2). Then, we 
an distinguish between di�erent 
aseswhere we are able to 
ompute the derivation.Lemma 2.3.15Let A 2 Mat(2 � 2) be a two dimensional matrix. Then there is an invertible matrixP su
h that B = PAP�1, where B 
orresponds to one of the following three di�erenttypes. �; � 2 C are the eigenvalues of A.Type one: A is diagonalizable: B = �� 00 ��Type two: � and � have non zero imaginary part:B = �a �bb a �Type three: � = � and A is not diagonalizable:B = �� 01 ��The next subse
tions des
ribe the di�erent types in detail. The di�erential equationis solved to sket
h the phase portrait. We assume that the matri
es of the ve
tor �eldsare given in the form as shown in lemma 2.3.15.Department of Computer S
ien
e, University of Kaiserslautern, Germany



Closed Streamlines in Flow Visualization 192.3.2.1 Linear Ve
tor Fields of Type OneLemma 2.3.16Let v be a ve
tor �eld of type one as des
ribed in lemma 2.3.15. Then the followingequation holds for the streamline x, where k = �k1k2� is a point on the streamline.x(t) = �et�k1et�k2� (2.3)Proof:A phase portrait of a ve
tor �eld of type one 
an be des
ribed in prin
iple in the followingway. A = �� 00 ��Compute etA: etA = 1Xk=0 (tA)kk!= 1Xk=0 �t� 00 t��kk!= 1Xk=0 � t�k! 00 t�k!�k=  P1k=0 (t�)kk! 00 P1k=0 (t�)kk! != �et� 00 et��Altogether we get the following equation des
ribing the streamline.x(t) = �et�k1et�k2�
❏Therefore, we mainly get three di�erent 
ases besides 
hanging the orientation of theve
tor �eld.1st 
ase: (� > 0 > �) In this 
ase we get the so 
alled saddle singularity, whi
h isshown in �gure 2.12.Department of Computer S
ien
e, University of Kaiserslautern, Germany
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Figure 2.12: A saddle singularity.

Figure 2.13: A node singularity.2nd 
ase: (� < � < 0) An example for this 
ase is the so 
alled node singularityshown in �gure 2.13.3rd 
ase: (� = � < 0) Figure 2.14 shows su
h a fo
us singularity.2.3.2.2 Linear Ve
tor Fields of Type TwoThe matrix A that represents the ve
tor �eld mathemati
ally des
ribes a rotation anda s
aling. This 
an be shown easily when we de�ne a rotational angle � := ar

os(ar )where we set r := pa2 + b2. We 
an dedu
e that:a = r 
os� (2.4)b = r sin� (2.5)Then we 
an write the matrix A as follows:A = �r 00 r� � �
os� � sin�sin� 
os� � (2.6)Department of Computer S
ien
e, University of Kaiserslautern, Germany
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Figure 2.14: A fo
us singularity.Lemma 2.3.17Let v be a ve
tor �eld of type two. Then the following equation des
ribes a streamlinewhere k = �k1k2� is a point on the streamline.x(t) = eta � �k1
os(tb)� k2sin(tb)k1sin(tb) + k2
os(tb)� (2.7)Proof:We interpret the map T given by the matrix A algebrai
ally by identifying R2 with the
omplex spa
e C . (x; y)$ x+ iy (2.8)We get the following 
orresponden
e for T :(x; y)  ! x+ iyx?yT x?yMultiplying with a+ib(ax� by; bx + ay)  ! (ax� by) + i(bx + ay) (2.9)In the same way there is a 
orresponden
e eA $ ea+b. This results with eA = �a1 a2a3 a4�in the following s
heme:(x; y)  ! x+ iyx?yeA x?yea+ib(a1x+ a2y; a3x + a4y)  ! ea(x 
os b� y sin b+ i(x sin b + y 
os b)) (2.10)By 
omparing the 
oeÆ
ients we 
an 
on
lude that the matrix eA 
an be representedas follows: eA = ea � �
os b � sin bsin b 
os b �Department of Computer S
ien
e, University of Kaiserslautern, Germany



22 Theory of Ve
tor FieldsA

ording to lemma 2.3.14 the following equation holds for a streamline 
ontaining thepoint k = �k1k2�. x(t) = eta ��k1
os(tb)� k2sin(tb)k1sin(tb) + k2
os(tb)� (2.11)
❏

Figure 2.15: A 
enter singularity.

Figure 2.16: A spiral singularity.With this equation we 
an see how the streamlines behave in su
h a ve
tor �eld. Ifwe have a = 0, the ve
tor �eld des
ribes simple 
ir
les as shown in �gure 2.15, while weget a spiral shaped phase portrait if we set a 6= 0 as sket
hed in �gure 2.16.Department of Computer S
ien
e, University of Kaiserslautern, Germany



Closed Streamlines in Flow Visualization 232.3.2.3 Linear Ve
tor Fields of Type ThreeLemma 2.3.18Let v be a ve
tor �eld of type three and A the 
orresponding matrix where v(x) = Axand A = �� 01 ��. Then we 
an des
ribe a streamline 
ontaining the point k = �k1k2� withthe following equation: x(t) = et� � � k1k1t + k2� (2.12)Proof:The matrix A 
an be split up in the following way:A = �� 01 �� = � � I + �0 01 0�For the matrixM = �0 01 0� the following equation holds whi
h 
an be easily 
omputed.M2 = �0 00 0� = 0Consequently, we get Mk = 0 for all k � 2.Then we 
an 
ompute etA as follows:etA = et(�I+M)= et�I+0�0 0t 01A= et�I � e0�0 0t 01A= et�I � (I + �0 0t 0�) , using the above equation= et� � �1 0t 1�Therefore, the following equation des
ribes a streamline 
ontaining the point k = �k1k2�.x(t) = et� � � k1k1t + k2� (2.13)
❏Figure 2.17 shows an example for su
h an improper node singularity.Department of Computer S
ien
e, University of Kaiserslautern, Germany
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Figure 2.17: An improper node singularity.2.4 Streamline ComputationIn this se
tion we des
ribe the 
omputation of streamlines. Sin
e the ve
tor �eld isgiven on a triangular, quadrilateral, or tetrahedral grid the ve
tors inside the 
ells areinterpolated linearly respe
tively bilinearly. In order to 
ompute a streamline we haveto solve the Cau
hy problem where the initial 
ondition is given by the starting pointof the streamline. Therefore we need to solve a di�erential equation. Consequently, thestreamlines itself have to be 
al
ulated using ODE solvers like for instan
e Runge-Kutta.The streamlines 
an be integrated in positive or negative dire
tion starting at the givenstarting point. To integrate in negative dire
tion we only need to invert the ve
tor �eld.In addition, it is possible to 
ompute streamlines exa
tly inside triangular 
ells.2.4.1 Numeri
al ComputationFor numeri
al integration we use standard methods that 
an be found in the numeri
alliterature [Tri02℄[Feh69℄[PTVF92℄[Gu
00℄. We favor predi
tor-
orre
tor methods likeRunge-Kutta method with adaptive stepsize. An optimized implementation for a �fthorder Runge-Kutta method with adaptive stepsize 
an be found in [PTVF92℄. Thesemethods only use the interpolation method inside the 
ells but do not depend on aspe
ial type of grid.2.4.2 Exa
t ComputationOn a triangular grid the ve
tor �eld is interpolated linearly. Inside a triangular 
ell we
an represent the ve
tor �eld as a single linear ve
tor �eld as in subse
tion 2.3.2. Inthis subse
tion we also explained an exa
t solution of the di�erential equation that hasto be solved in order to 
ompute a streamline. This method was �rst introdu
ed byNielson [NHM97℄. Consequently, we 
an 
al
ulate a streamline starting at an arbitraryDepartment of Computer S
ien
e, University of Kaiserslautern, Germany



Closed Streamlines in Flow Visualization 25starting point using these formulas inside a triangle. When the streamline leaves thetriangle we determine the interse
tion with one of the edges of the triangle numeri
ally.Then we 
an start the integration pro
ess in the neighboring 
ell at that interse
tion.This way we 
an go from one triangle to another.2.5 Closed StreamlinesWhen 
omputing streamlines it often happens that the streamline 
omputation doesnot terminate. This is mostly due to 
losed streamlines where the streamline ends upin a loop that 
annot be left. These 
losed streamlines are introdu
ed and explainedin this se
tion. More about the theoreti
al ba
kground 
an be found in several books[YqSlLs+86℄[Rou98℄.2.5.1 Limit SetsThe topologi
al analysis of ve
tor �elds 
onsiders the asymptoti
 behavior of streamlines.There we have two di�erent kind of so 
alled limit sets, the origin set or �-limit set ofa streamline and the end set or !-limit set.De�nition 2.5.1 (�-limit set)Let s be a streamline in a given ve
tor �eld v. Then we de�ne the �-limit set as thefollowing set: fp 2 R2 j9(tn)1n=0 � R; tn ! �1; limn!1 s(tn)! pgDe�nition 2.5.2 (!-limit set)Let s be a streamline in a given ve
tor �eld v. Then we de�ne the !-limit set as thefollowing set: fp 2 R2 j9(tn)1n=0 � R; tn !1; limn!1 s(tn)! pgRemark 2.5.3Let v be a ve
tor �eld as in de�nition 2.1.1. We speak of an �- or !-limit set L of v ifthere exists a streamline s in the ve
tor �eld v that has L as �- or !-limit set.If the �- or !-limit set of a streamline 
onsists of only one point, this point is a 
riti
alpoint. The most 
ommon 
ase of a �- or !-limit set in a planar ve
tor �eld 
ontainingmore than one inner point of the domain is a 
losed streamline whi
h is de
lared in thenext de�nition. Figure 2.18 shows an example for �- and !-limit sets. Here we have a
riti
al point and a 
losed streamline. The 
riti
al point and the 
losed streamline aretheir own �- and !-limit set. For every other streamline the 
losed streamline is the!-limit set. If the streamline starts inside the 
losed streamline the 
riti
al point is theDepartment of Computer S
ien
e, University of Kaiserslautern, Germany
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�
�
�
�

Figure 2.18: Example for �- and !-limit sets.�-limit set. Otherwise the �-limit set is empty. Now that we showed an example for a
losed streamline let us give a pre
ise de�nition.De�nition 2.5.4 (Closed streamline)Let v be a ve
tor �eld as in de�nition 2.1.1. A 
losed streamline 
 : R ! Rn ; t 7! 
(t)is a streamline of a ve
tor �eld v su
h that there is a t0 2 R with
(t+ nt0) = 
(t) 8n 2 Nand 
 not 
onstant.Remark 2.5.5There are several di�erent terms des
ribing a 
losed streamline. The terms limit 
y
le,
losed orbit, and 
losed streamline are equivalent.Similar to 
riti
al points we de�ne asymptoti
ally stability of 
losed streamlines. Ifa 
losed streamline is asymptoti
ally stable it is attra
ting.De�nition 2.5.6 (Asymptoti
ally stability of 
losed streamlines)Let v : W ! Rn be a ve
tor �eld as in de�nition 2.1.1 that is 
ontinuously di�erentiable.Let further � be the 
orresponding dynami
al system and 
 � W a 
losed streamline. Iffor every neighborhood U � W with 
 � U there is a neighborhood U1 � U with 
 � U1su
h that �t(x) 2 U for all x 2 U1 and t > 0 andlimt!1minfk�t(x)� zkjz 2 
g = 0then 
 is 
alled asymptoti
ally stable 
losed streamline.This means that an asymptoti
ally stable 
losed streamline attra
ts the 
ow inside aspe
ial neighborhood. It also follows from this de�nition that an asymptoti
ally stable
losed streamline is isolated from other 
losed orbits. In the same way there are 
losedstreamlines that are repelling. For instan
e, by inverting the ve
tor �eld we 
an turnan attra
ting 
losed streamline into a repelling one.Department of Computer S
ien
e, University of Kaiserslautern, Germany
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ar�e Map

y

R(y)

x

S

R(x)

(a) x

P

P

R(x)
R

S

S(b)Figure 2.19: Poin
ar�e se
tion (a) and Poin
ar�e map (b).Let us assume we have a two dimensional ve
tor �eld 
ontaining one limit 
y
le.Then we 
an 
hoose a point P on the limit 
y
le and draw a 
ross se
tion S whi
h isa line segment not parallel to the limit 
y
le a
ross the ve
tor �eld. This line is 
alleda Poin
ar�e se
tion. If we start a streamline at an arbitrary point x on S and followit until we 
ross the Poin
ar�e se
tion S again, we get another point R(x) on S. Thisresults in the Poin
ar�e map R. Figure 2.19 illustrates the situation. The left part showsthe Poin
ar�e se
tion with the limit 
y
le in the middle drawn with a thi
ker line, whilethe right part displays the Poin
ar�e map itself. Obviously the point P on the limit 
y
leis mapped onto itself. Consequently, it is a �xed point of the Poin
ar�e map.Let us pre
ise this in some de�nitions:De�nition 2.5.7 (Cross se
tion)Let v be a ve
tor �eld as in de�nition 2.1.1 and S � Rn an open set on a hyperplaneof dimension n� 1 that is transverse to v. Transverse to v means that v(x) =2 S for allx 2 S. Then S is 
alled a 
ross se
tion.De�nition 2.5.8 (Poin
ar�e map)Let v be a ve
tor �eld and � the dynami
al system belonging to v. Let further be S a
ross se
tion that interse
ts a 
losed streamline at a point P . Then the Poin
ar�e mapis de�ned as the map R : S ! S su
h thatx 7! �t(x) ;Department of Computer S
ien
e, University of Kaiserslautern, Germany



28 Theory of Ve
tor Fieldswhere t is the time the streamline started at x needs to interse
t the 
ross se
tion againafter one turn.Remark 2.5.9It is obvious that the point P on the 
losed streamline is a �xed point of the Poin
ar�emap.2.5.3 The Poin
ar�e-Bendixson TheoremIn this subse
tion we show a fundamental result whi
h makes it easier to �nd 
losedstreamlines in a two dimensional ve
tor �eld. This property is exploited by our algorithmwhi
h is introdu
ed later.Theorem 2.5.10 (Poin
ar�e-Bendixson Theorem)Let W � R2 be an open subset and v : W ! R2 a two dimensional, 
ontinuouslydi�erentiable ve
tor �eld. Let further L � W be a nonempty 
ompa
t limit set of theve
tor �eld v that 
ontains no 
riti
al point. Then L des
ribes a 
losed streamline.Proof:See [HS74℄, pages 248 and 249. ❏Corollary 2.5.11Let W � R2 be an open subset and v : W ! R2 a two dimensional, 
ontinuouslydi�erentiable ve
tor �eld. Let further D � W be a nonempty 
ompa
t subset whi
h
ontains no 
riti
al point and s a streamline inside D. If the streamline s does not leaveD then there exists a 
losed streamline inside D.Using this 
orollary our algorithm to dete
t 
losed streamlines 
an simply integratea streamline and 
he
k during the integration pro
ess if it runs into a 
ompa
t regionthat is never left. If we �nd su
h a region this 
orollary states that we found a 
losedstreamline.2.6 Ve
tor Field TopologyThe topologi
al graph, or simply topology, of a ve
tor �eld des
ribes the stru
ture ofthe phase portrait. Considering saddle singularities we 
an de�ne separatri
es.De�nition 2.6.1 (Separatri
es)Let v be a ve
tor �eld as in de�nition 2.1.1 and x0 a saddle singularity. The streamlinesemerging in eigendire
tion are 
alled separatri
es.Department of Computer S
ien
e, University of Kaiserslautern, Germany



Closed Streamlines in Flow Visualization 29Ea
h separatrix 
onne
ts the saddle point with another 
riti
al point or the boundaryof the ve
tor �eld. The separatri
es divide the ve
tor �eld in various topologi
al regions.Ea
h region 
annot be left by an individual streamline ex
ept for the 
ase where thestreamline 
rosses the boundary. Furthermore, every streamline in that region thatdoes not rea
h the boundary 
onverges to the same 
riti
al point or 
losed streamlinefor t ! 1 and to the same 
riti
al point or 
losed streamline for t ! �1. Now weintrodu
ed every 
on
ept needed for ve
tor �eld topology.De�nition 2.6.2 (Topology)Let v be a ve
tor �eld as in de�nition 2.1.1. The topology is built by all 
riti
al points,separatri
es and 
losed streamlines of v.

(a) (b)Figure 2.20: Topologi
al graphs of two ve
tor �elds.Figure 2.20 shows two examples for topologi
al graphs of a simple ve
tor �eld. The
riti
al points are 
olored a

ording to its type: saddles are drawn in red, sinks are bluewhile sour
es are 
olored green. The ve
tor �eld in sub�gure (a) 
ontains one 
losedstreamline while the other sub�gure does not 
ontain any 
losed streamlines. In bothpi
tures we 
an 
learly re
ognize the prin
iple stru
ture of the 
ow inside the ve
tor�elds. Department of Computer S
ien
e, University of Kaiserslautern, Germany



30 Theory of Ve
tor Fields2.7 Stru
tural StabilityIf a ve
tor �eld is slightly perturbed it may happen that the topology stays the same if the
hange is suÆ
iently small. This means that there exists a homeomorphism that mapsea
h streamline of the original 
ow to the perturbed one. This homeomorphism gives aone-to-one 
orresponden
e between 
riti
al points and 
losed streamlines of the 
ow. Ifsu
h a homeomorphism exists we say that the two 
ows are topologi
ally equivalent.De�nition 2.7.1 (Topologi
ally equivalent)Let v and w be two ve
tor �elds as in de�nition 2.1.1. Let further � and  be thedynami
al system a

ording to v respe
tively w. If there exists a homeomorphism h :Rn ! Rn su
h that for any t1 there is a t2 withh(�t1(x)) =  t2(x)then v and w are topologi
ally equivalent.To de�ne neighboring ve
tor �elds we need a norm on ve
tor �elds �rst. Then we
an de�ne neighboring ve
tor �elds as ve
tor �elds that di�er only slightly.De�nition 2.7.2Let v be ve
tor �eld as in de�nition 2.1.1 that is 
ontinuous di�erentiable. Then thenorm kvk of a ve
tor �eld is de�ned as kvk = max(fkv(x)kjx 2 Wg [ fkDv(x)kjx 2Wg). We allow kvk =1.De�nition 2.7.3 (Neighborhood)Let v be a ve
tor �eld as in de�nition 2.1.1 that is 
ontinuous di�erentiable. Let furtherN = fw 2 fvjv : W ! Rngjkv � wk < �g. This means that every ve
tor �eld w 2 N isa perturbed version of v. Then N is 
alled a neighborhood of v.If there exists a neighborhood N of a given ve
tor �eld v where every ve
tor �eld istopologi
ally equivalent to the other, the ve
tor �eld v is 
alled stru
tural stable. Thismeans that the topology of the ve
tor �eld that is slightly perturbed stays the same.The following de�nition pre
ises that.De�nition 2.7.4 (Stru
tural stable)Let v be a ve
tor �eld as in de�nition 2.1.1. If there is a neighborhood N of v su
hthat every ve
tor �eld w 2 N is topologi
ally equivalent to v then v is 
alled stru
turalstable.We now want to give a theorem that explains when a two dimensional ve
tor �eldis stru
tural stable. But �rst we need a de�nition whi
h shows a spe
ial 
on�guration
on
erning saddle singularities. Ve
tor �elds 
ontaining su
h a 
on�guration 
an neverbe stru
tural stable.Department of Computer S
ien
e, University of Kaiserslautern, Germany
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(a) Hetero
lini
 
onne
tion (b) Homo
lini
 
onne
tionFigure 2.21: Saddle 
onne
tions.De�nition 2.7.5 (Saddle 
onne
tions)Let v be a ve
tor �eld as in de�nition 2.1.1 and s1 and s2 two saddle singularitiesof v. If a separatrix 
onne
ts s1 and s2 then this separatrix is 
alled a hetero
lini

onne
tion. If a separatrix 
onne
ts s1 with itself this separatrix is 
alled homo
lini

onne
tion.Figure 2.21 shows the two di�erent 
on�gurations. The next theorem shows thatfor stru
tural stability in a two dimensional ve
tor �eld it is ne
essary that the 
riti
alpoints and 
losed streamlines need to be hyperboli
. Additionally, saddle 
onne
tionsare not allowed.Theorem 2.7.6Let v : W ! R2 a ve
tor �eld as in de�nition 2.1.1 with a �nite number of 
riti
alpoints and 
losed streamlines. Then v is stru
turally stable if and only if1. all 
riti
al points of v are hyperboli
.2. ea
h 
losed streamline of v is either repelling or attra
ting.3. there are no saddle 
onne
tions.Proof:See [HS74℄, pages 314 through 317. ❏2.8 Bifur
ationsClosed streamlines are introdu
ed in the �eld by stru
tural 
hanges. When a ve
tor �eld
hanges over time there may be a 
hange in the topology from one state to another.Department of Computer S
ien
e, University of Kaiserslautern, Germany



32 Theory of Ve
tor FieldsThis, of 
ourse, implies that the ve
tor �eld is not stru
turally stable in that 
ase. Theunstable state in between is 
alled a bifur
ation. This 
hange may only a�e
t one 
riti
alpoint and its nearer surrounding. Then we 
all it a lo
al bifur
ation. The other 
ase isa global bifur
ation where the global stru
ture of the 
ow is 
hanged.Here we 
onsider only bifur
ations that result in the 
reation or vanishing of a 
losedstreamline. The main types are the Hopf Bifur
ation whi
h is a lo
al bifur
ation andthe Periodi
 Blue Sky in 2D Bifur
ation whi
h is a global one.

(a) (b) (
)

(d) (e)Figure 2.22: Hopf bifur
ation.
Department of Computer S
ien
e, University of Kaiserslautern, Germany



Closed Streamlines in Flow Visualization 332.8.1 Hopf Bifur
ationLet us assume that we are given an attra
ting fo
us as in �gure 2.22a so that a stream-line spirals around this 
riti
al point and �nally 
onverges to it. If the attra
ting e�e
tweakens the number of rotations of the streamline will in
rease as in �gure 2.22b. Con-tinuing with this pro
ess the attra
ting fo
us be
omes a 
enter point (�gure 2.22
) whi
his an unstable stru
ture: the Hopf bifur
ation has o

urred. Going further, the stru
turebe
omes stable again and we have now a repelling fo
us. Sin
e the global stru
ture ofthe 
ow has not 
hanged, we still have an in
ow from the outside and a 
ow starting atthe 
riti
al point. Consequently, a 
losed streamline appears a

ording to the Poin
ar�e-Bendixson-Theorem [GH83℄ as in �gure 2.22d and 2.22e. Inverting the dire
tion of time,we get a transition from a 
losed streamline with a repelling fo
us inside into an attra
t-ing fo
us over an instantaneous 
enter where the 
losed streamline vanishes. Similartransitions are obtained by inverting the dire
tion of the 
ow, i.e. by repla
ing sour
esby sinks. (It may be noted that we 
an apply the Poin
ar�e-Bendixson-theorem only ifthe ve
tor �eld is 
ontinuous. Further we have a region without 
riti
al points.)2.8.2 Periodi
 Blue Sky in 2D Bifur
ation

(a) (b) (
)Figure 2.23: Periodi
 Blue Sky in 2D.In this type of bifur
ation there are two di�erent types of 
riti
al points involved:a saddle and an attra
ting fo
us. Figure 2.23a shows the situation. As the attra
tinge�e
t of the fo
us gets weaker and weaker we see a homo
lini
 
onne
tion after sometime where the saddle is 
onne
ted to itself as shown in �gure 2.23b. This results in abifur
ation: when this 
on�guration breaks up again we �nd a limit 
y
le whi
h simplyappears out of the blue. The reason for the o

urren
e of the 
losed streamline is that theattra
ting fo
us is totally una�e
ted by the whole event. Sin
e there is an out
ow to the
riti
al point inside and to the saddle there must be a 
riti
al point or a 
losed streamlinein this region a

ording to the Poin
ar�e-Bendixson theorem. Be
ause of the fa
t thatDepartment of Computer S
ien
e, University of Kaiserslautern, Germany



34 Theory of Ve
tor Fieldsthere are only the two 
riti
al points a 
losed streamline emerged. This 
on�gurationis shown in �gure 2.23
. Other bifur
ations of the same type 
an be 
onstru
ted byinverting time or repla
ing the attra
ting fo
us with a repelling one.

Department of Computer S
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Chapter 3State of the ArtFlows o

ur in various di�erent forms in s
ien
e and engineering. For instan
e, a windtunnel experiment results in su
h a 
ow. The path of the air des
ribes how the 
owbehaves around a spe
ial obje
t as, for example, a 
ar. In
ows into spe
ial parts, like athrust 
hamber, are of interest also. There, the 
ow des
ribes the inje
tion of the gas.The 
omposition of gas and oxygen is very important in 
ombustion pro
esses. A betterinsight into the 
ow 
an help optimizing this pro
ess.Several visualization methods are available at present. Here, we 
on
entrate ondes
ribing these methods that are useful in our appli
ation area. An overview over thevarious visualization methods 
an also be found in other publi
ations [GLW97℄ and PhDtheses [L�of98℄[Tri02℄.3.1 Ve
tor Field VisualizationVarious methods exist that show di�erent aspe
ts of ve
tor �elds. Hedgehog methods[PvW93℄ draw arrows tangential to the 
ow. Ea
h arrow represents a ve
tor at thatposition. The length shows the velo
ity. The prin
iple stru
ture of the 
ow 
an bere
ognized using this method. But spe
ial features like 
losed streamlines 
an easily beoverseen. In the three dimensional 
ase, o

lusion problems o

ur so that an analysis ofthe ve
tor �eld is diÆ
ult with this method.Texture based methods visualize the whole phase portrait. There are mainly twodi�erent methods for 
reating the texture: spot noise [vW91℄[dLvW95℄[dLPV96℄ and lineintegral 
onvolution (LIC) [CL93℄. To 
reate a spot noise texture, randomly weightedand positioned spots are a

umulated. The shape of the spots 
ontrols the texturelo
ally. If we align, for instan
e, the larger axis of the spots parallel to the 
ow dire
tionthe resulting texture visualizes the ve
tor �eld. The LIC method uses a white noisetexture as a basis. This texture gets smeared in the 
ow dire
tion: another texture is
reated where for every pixel a short streamline is 
omputed and the 
olor values ofDepartment of Computer S
ien
e, University of Kaiserslautern, Germany



36 State of the Art

Figure 3.1: Ve
tor �eld 
ontaining a 
losed streamline visualized using the LIC method.
ea
h pixel of the white noise texture that is 
rossed by this streamline is summed up.Figure 3.1 shows an example of a LIC image.Many extensions [KB96℄[SJM96℄ and performan
e optimizations [SH95℄[SZH96℄ existfor this method. To introdu
e orientation information oriented line integral 
onvolution(OLIC) was proposed by Wegenkittl et al. [WG97℄[WGP97℄. For time-dependent 
owsthe standard method is not suitable be
ause it results in a 
i
kering animation. There-fore some extensions exist [Lan93℄[FC95℄ like for instan
e unsteady 
ow line integral
onvolution (UFLIC) [SK97℄[SK98℄. This method is based on the fast LIC algorithm[SH95℄. The di�eren
e is in the 
onvolution kernel: to a
hieve temporal 
oheren
e onlythe pixel 
al
ulations with a smaller time-stamp than the a
tual one are 
onsidered.To tra
k a parti
le in the 
ow over time streamlines, streaklines, and pathlines[Han93℄[Lan94℄ are used. A streamline shows the path of a massless parti
le in the 
ow. Su
ha parti
le follows the traje
tory of the dynami
al system. A streakline visualizes thepath of dye inje
ted for a period of time at a �xed position into a time dependent 
owwhile a pathline only follows a single parti
le. A parti
le 
orresponds to a point movingthrough the 
ow. If we use more general obje
ts like lines, 
ir
les, or impli
it surfa
esstreamsurfa
es, streamribbons, streamtubes, or streamballs are 
reated [BDH+94℄.Also, an n-sided polygon 
an be pla
ed perpendi
ular to the 
ow and moved along thetraje
tory [SVL91℄. This method additionally depi
ts lo
al 
ow attributes, like rotationand shear.Department of Computer S
ien
e, University of Kaiserslautern, Germany



Closed Streamlines in Flow Visualization 373.2 Topologi
al MethodsTopologi
al methods depi
t the stru
ture of the 
ow by 
onne
ting sour
es, sinks, andsaddle singularities with separatri
es. Criti
al points were �rst investigated by Perry[PF74℄[Per84℄[PC87℄, Dallmann [Dal83℄, Chong [CPC90℄ and others. The method itselfwas �rst introdu
ed in visualization for two dimensional 
ows by Helman and Hesselink[HH89b℄[HH89a℄[HH90℄[HH91℄[Hel97℄. Several extensions to this method exist. S
heuer-mann et al. [SHJK00℄ extended the method to work on a bounded region. To get thewhole topologi
al skeleton of the ve
tor �eld, points on the boundary have to be takeninto a

ount, also. These points are 
alled boundary saddles. To 
reate a time depen-dent topology for two dimensional ve
tor �elds, Helman and Hesselink [HH91℄ use thethird 
oordinate to represent time. This results in surfa
es representing the evolutionof the separatri
es. A similar method is proposed by Tri
o
he et al. [TSH01℄[TWSH02℄but this work fo
uses on tra
king singularities through time. Although 
losed stream-lines 
an a
t in the same way as sour
es or sinks, they are ignored in the 
onsiderationsof Helman and Hesselink and others.

Figure 3.2: Streamsurfa
e inside the blunt �n dataset from NASA [HB90℄.To extend this method to three dimensional ve
tor �elds, Globus et al. [GLL91℄ pre-sented a software system that is able to extra
t and visualize some topologi
al aspe
tsof three dimensional ve
tor �elds. The various 
riti
al points are 
hara
terized using theeigenvalues of the Ja
obian. This te
hnique was also suggested by Helman and Hesselink[HH91℄. But the whole topology of a three dimensional 
ow is not yet available. There,streamsurfa
es are required to represent separatri
ies. A few algorithms for 
omputingDepartment of Computer S
ien
e, University of Kaiserslautern, Germany



38 State of the Artstreamsurfa
es exist [Hul92℄[SBH+01℄ but are not yet integrated in a topologi
al algo-rithm. Figure 3.2 shows a streamsurfa
e inside the famous blunt �n dataset providedby NASA [HB90℄ 
onstru
ted with the algorithm by S
heuermann et al. [SBH+01℄.3.3 Closed Streamlines in VisualizationThere are some algorithms to �nd 
losed streamlines in dynami
al systems that 
an befound in the numeri
al literature. Aprille and Tri
k [AT72℄ proposed a so 
alled shootingmethod. There, the �xed point of the Poin
ar�e map is found using a numeri
al algo-rithm like Newton-Raphson. Dellnitz et al. [DJ99℄ dete
t almost 
y
li
 behavior. It is asto
hasti
al approa
h where the Frobenius-Perron operator is dis
retized. This sto
has-ti
al measure identi�es regions where traje
tories stay very long. But these mathemat-i
al methods typi
ally depend on 
ontinuous dynami
al systems where a 
losed formdes
ription of the ve
tor �eld is available. This is usually not the 
ase in visualizationand simulation where the data is given on a grid and interpolated inside the 
ells. VanVeldhuizen [vV87℄ uses the Poin
ar�e map to 
reate a series of polygons approximatingan attra
ting 
losed streamline. The algorithm starts with a rough approximation ofthe 
losed streamline. Every vertex is mapped by the Poin
ar�e map iteratively to get a�ner approximation. Then, this series 
onverges to the 
losed streamline.To get a hierar
hi
al approa
h for the visualization of invariant sets, and therefore
losed streamlines also, B�urkle et al. [BDJ+99℄ en
lose the invariant set by a set ofboxes. They start with a box that surrounds the invariant set 
ompletely. This box issu

essively bise
ted in 
y
ling dire
tions. It is always ensured that the result still in-
ludes the 
omplete invariant set. Using this bise
tion, an approximation of the invariantset is �nally found whi
h 
an be rendered using a volume renderer. The publi
ation ofGu
kenheimer [Gu
00℄ gives a detailed overview 
on
erning invariant sets in dynami
alsystems.Some publi
ations deal with the analysis of the behavior of dynami
al systems.S
hemati
 drawings showing the various kinds of 
losed streamlines 
an be found in thebooks of Abraham and Shaw [AS84℄[AS88℄. Fis
hel et al. [FDM+97℄ presented a 
asestudy where they applied di�erent visualization methods to dynami
al systems. In theirappli
ations also strange attra
tors, like the Lorentz attra
tor, and 
losed streamlineso

ur. So 
alled sweeps whi
h are traje
tories represented as tubes are used. Thesesweeps allow to introdu
e a 
olor 
oding s
heme. For instan
e, the 
olor 
an help tore
ognize that a traje
tory still slowly moves towards a 
losed streamline that weaklyattra
ts.Wegenkittl et al. [WLG97℄ visualize higher dimensional dynami
al systems. Todisplay traje
tories parallel 
oordinates [ID90℄ are used. A traje
tory is sampled atvarious points in time. Then these points are displayed in the parallel 
oordinate systemand a surfa
e is extruded to 
onne
t these points. As an example, also a 
haoti
 attra
torDepartment of Computer S
ien
e, University of Kaiserslautern, Germany



Closed Streamlines in Flow Visualization 39derived from the Lorentz system is visualized. Hepting et al. [HDER95℄ study invarianttori in four dimensional dynami
al systems by using suitable proje
tions into threedimensions to enable detailed visual analysis of the tori. This visualization 
an helpwhen limits of mathemati
al analysis are rea
hed to get more insight into the dynami
alsystem.

Figure 3.3: Poin
ar�e se
tion with 
losed streamline (image 
ourtesy of Helwig Hauser,VRVis[LKG97℄).L�o�elmann [L�of98℄[LKG97℄ uses Poin
ar�e se
tions to visualize 
losed streamlinesand strange attra
tors. Poin
ar�e se
tions de�ne a dis
rete dynami
al system of lowerdimension whi
h is easier to understand. The Poin
ar�e se
tion whi
h is transverse tothe 
losed streamline is visualized as a disk. On the disk, spot noise is used to depi
tthe ve
tor �eld proje
ted onto that disk. By this method, it 
an be 
learly re
ognizedwhether the 
ow, for instan
e, spirals around the 
losed streamline and is attra
tedor repelled or if it is a rotating saddle. Additionally, streamlines and streamsurfa
esshow the ve
tor �eld in the vi
inity of the 
losed streamline that is not lo
ated on thedisk visualizing the Poin
ar�e se
tion. Figure 3.3 shows an example of that visualizationmethod.3.4 Distributed ComputingDue to in
reasing 
omputing power during the last years 
ow simulations be
ame largerand larger at �ner resolutions. Often, these simulations are 
omputed on a parallelma
hine. Consequently, it takes a long time to 
ompute an appropriate visualization forDepartment of Computer S
ien
e, University of Kaiserslautern, Germany
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h big datasets. Espe
ially, when dealing with an algorithm that needs to 
omputemany streamlines it helps a lot to 
ompute this in parallel also. Several parallel algo-rithms exist in visualization. In the following, we want to list a few of them that dealwith problems that are related to this work.Sujudi et al. [SH96℄ presented a method for 
omputing streamlines in a parallelenvironment by splitting the dataset into several sub-domains. If the streamline leavesa sub-domain another pro
ess responsible for the a
tual domain has to 
ontinue the
omputation. Reinhard et al. [RCJ99℄ proposed a parallel rendering method that dis-tributes tasks for ea
h ray whi
h has to be 
omputed to the di�erent pro
essors of theparallel ma
hine. A parallelization of line integral 
onvolution was presented by Z�o
kleret al. [ZSH96℄ where the ve
tor �eld is divided into several subdomains depending onthe number of pro
essors used.

Department of Computer S
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Chapter 4Dete
tion and Visualization inPlanar FlowsThis 
hapter des
ribes an algorithm that dete
ts if an arbitrary streamline 
 
onvergesto a 
losed 
urve, also 
alled a limit 
y
le. This means that 
 has 
 as �- or !-limit setdepending on the orientation of integration. We do not assume any knowledge on theexisten
e or lo
ation of the 
losed 
urve, so that the algorithm 
an dete
t stable 
losedstreamlines. We exploit the fa
t that we use linear interpolation inside the 
ells forthe proof of our algorithm. But the prin
iple of the algorithm works on any pie
ewisede�ned planar ve
tor �eld where one 
an determine the topology inside the pie
es. First,we des
ribe how to explain and prove the presen
e of a 
losed streamline and �nally wegive a pro
edure how to �nd the exa
t position of the 
losed streamline.4.1 Dete
tion of Closed StreamlinesIn a pre
omputational step every singularity of the ve
tor �eld is determined. To �ndall stable 
losed streamlines we mainly 
ompute the topologi
al skeleton of the ve
tor�eld. We use an ordinary streamline integrator, like for instan
e an ODE solver usingRunge-Kutta. But we extended this streamline integrator so that it is able to dete
t
losed streamlines. In order to �nd all 
losed streamlines that reside inside another
losed streamline we have to 
ontinue integration after we found a 
losed streamlineinside that region.4.1.1 TheoryThe basi
 idea of our streamline integrator is to determine a region of the ve
tor �eldthat is never left by the streamline. A

ording to the Poin
ar�e-Bendixson-Theorem, astreamline approa
hes a 
losed streamline if no singularity exists in that region.Department of Computer S
ien
e, University of Kaiserslautern, Germany
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Figure 4.1: A streamline approa
hing a limit 
y
le has to reenter 
ells.Notation 4.1.1 (A
tually investigated streamline)We use the term a
tually investigated streamline to des
ribe the streamline thatwe 
he
k if it runs into a limit 
y
le.To redu
e 
omputational 
ost we �rst integrate the streamline using a Runge-Kutta-method of �fth order with an adaptive stepsize 
ontrol. Every 
ell that is 
rossed by thestreamline is stored during the 
omputation. If a streamline approa
hes a limit 
y
le ithas to reenter the same 
ell again as shown in �gure 4.1. This results in a 
ell 
y
le:De�nition 4.1.2 (Cell 
y
le)Let s be a streamline in a given ve
tor �eld v. Further, let G be a set of 
ells representingan arbitrary re
tangular or triangular grid without any holes. Let C � G be a �nitesequen
e 
0; : : : ; 
n of neighboring 
ells where ea
h 
ell is 
rossed by the streamline s inexa
tly that order and 
0 = 
n. If s 
rosses every 
ell in C in this order again while
ontinuing, C is 
alled a 
ell 
y
le.This 
ell 
y
le identi�es the region mentioned earlier. To 
he
k if this region 
an beleft we 
ould integrate ba
kwards starting at every point on the boundary of the 
ell
y
le. If there is one point 
onverging to the a
tually investigated streamline we knowfor sure that the streamline will leave the 
ell 
y
le. If not, the a
tually investigatedstreamline will never leave the 
ell 
y
le. Sin
e there are in�nitely many points on theboundary this, of 
ourse, results in a non-terminating algorithm. To 
ra
k this problemwe have to redu
e the number of points we have to 
he
k. Therefore we de�ne potentialexit points:De�nition 4.1.3 (Potential exit points)Let C be a 
ell 
y
le in a given grid G as in De�nition 4.1.2. Then there are two kindsof potential exit points. First, every vertex of the 
ell 
y
le C is a potential exitDepartment of Computer S
ien
e, University of Kaiserslautern, Germany
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ond, every point on an edge at the boundary of C where the ve
tor �eld istangential to the edge is also a potential exit point. Here, only edges that are partof the boundary of the 
ell 
y
le are 
onsidered. Additionally, only the potential exitpoints in the spiraling dire
tion of the streamline need to be taken into a

ount.To determine if the streamline leaves the 
ell 
y
le we start a ba
kward integratedstreamline to see where we have to enter the 
ell 
y
le in order to leave it at that exit.We will show later that it is suÆ
ient to only 
he
k these potential exit points if wewant to �gure out if the streamline 
an leave the 
ell 
y
le.Notation 4.1.4 (Ba
kward integrated streamline)We use the term ba
kward integrated streamline for the streamline we integrateby inverting the ve
tors of the ve
tor �eld starting at a potential exit point in order tovalidate this exit point.
exit

Figure 4.2: If a real exit point 
an be rea
hed, the streamline will leave the 
ell 
y
le.De�nition 4.1.5 (Real exit points)Let P be a potential exit point of a given 
ell 
y
le C as in de�nition 4.1.3. If theba
kward integrated streamline starting at P does not leave the 
ell 
y
le after one fullturn through the 
ell 
y
le, the potential exit point is 
alled a real exit point.Sin
e a streamline 
annot 
ross itself the ba
kward integration starting at a realexit point 
onverges to the a
tually investigated streamline. Consequently, the a
tuallyinvestigated streamline leaves the 
ell 
y
le near that real exit point. Figure 4.2 showssu
h a real exit point.If on the other hand no real exit point exists we 
an determine for every potentialexit point where we have a region with an in
ow that leaves at that potential exit.Consequently, the a
tually investigated streamline 
annot leave near that potential exitpoint.With these de�nitions we 
an formulate the main theorem for our algorithm:Department of Computer S
ien
e, University of Kaiserslautern, Germany
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exit

exit

entry

Figure 4.3: If no real exit point 
an be rea
hed, the streamline will approa
h a limit
y
le.Theorem 4.1.6Let C be a 
ell 
y
le with no singularity inside and E the set of potential exit points.If there is no real exit point among the potential exit points E or there are no potentialexit points at all then there exists a 
losed streamline inside the 
ell 
y
le.Proof: (Sket
h)Let C be the 
ell 
y
le. It is obvious that we 
annot leave the 
ell 
y
le C if all ba
kwardintegrated streamlines started at every point on the boundary of C leave the 
ell 
y
leC. A

ording to the Poin
ar�e-Bendixson-theorem, there exists a 
losed streamline insidethe 
ell 
y
le in that 
ase.We will show now that it is suÆ
ient to treat only the potential exit points. If theba
kward integrated streamlines starting at all these potential exit points leave the 
ell
y
le the ba
kward integration of any point on an edge will also do.Figure 4.4 shows the di�erent 
on�gurations of potential exits. Let E be an arbitrarypoint on an edge between two potential exit points. In part (a) both ba
kward integratedstreamlines starting at the verti
es V1 and V2 leave the 
ell 
y
le. Consequently, E 
annotbe an exit. It would need to 
ross one of the other ba
kward integrated streamlines whi
h
ontradi
ts with theorem 2.1.8.Part (b) of �gure 4.4 shows the 
ase where the ve
tor at a point on the edge istangential to the edge. Obviously, if E lies between V1 and T the ba
kward integratedstreamline will leave the 
ell 
y
le immediately. If it lies between T and V2 and 
onvergesto the a
tually investigated streamline it has to 
ross the ba
kward integrated streamlinestarted at T . This 
ontradi
ts with theorem 2.1.8. Be
ause of the linear interpolationat the edge, part (
) is also impossible.We have shown that the a
tually investigated streamline 
annot leave the 
ell 
y
le.Consequently, there exists a 
losed streamline inside the 
ell 
y
le C sin
e there is nosingularity inside C. ❏Department of Computer S
ien
e, University of Kaiserslautern, Germany
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backward integration
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backward integration

1 2V VT E

actual streamline(e)Figure 4.4: Di�erent 
ases of potential exits. (a) and (b) is impossible be
ause stream-lines 
annot 
ross ea
h other, (
) 
ontradi
ts with the linear interpolation on an edge,in (d) and (e) both ba
kward integrations 
onverge to the a
tual streamline so that thepoint E is a real exit.Department of Computer S
ien
e, University of Kaiserslautern, Germany



46 Dete
tion and Visualization in Planar FlowsRemark 4.1.7To get a possible 
on�guration the ba
kward integration starting at the vertex V1 mustalso 
onverge to the streamline be
ause it 
annot 
ross the ba
kward integration startingat point E as in part (d) of �gure 4.4. Part (e) explains why we also need to investigatethe tangential 
ase. If we start a ba
kward integrated streamline at point E it 
onvergestowards the a
tually investigated streamline. But if we only 
onsider the verti
es of theedge, both exit points may be no real exit points. Therefore we also have to start aba
kward integrated streamline at the point T , where the ve
tor �eld is tangential to theedge, to �gure out that we leave the 
ell 
y
le at this edge. On the other hand, a ba
kwardintegrated streamline starting at any point between V1 and T immediately leaves the 
ell
y
le due to the linear interpolation.4.1.2 AlgorithmWith theorem 4.1.6 we are able to des
ribe our algorithm in detail. It mainly 
onsistsof the same three di�erent states:
➊ streamline integration: identifying one 
ell 
hange after the other, 
he
k at ea
h
ell if we 
omplete a 
ell 
y
le.
➋ 
he
king for exits: going ba
kwards through the 
rossed 
ells and looking forpotential exit points.
➌ validating exit: integrating ba
kwards a 
urve from potential exit through thewhole 
ell 
y
le.

Start critical point

boundary

limit cycle

exit valid

       foundexit
starts
outside

potential exit

(3) Validating
     Exit

(2) Checking
for Exit

(1) Streamline
Integration

cell cycle
detected

Figure 4.5: The UML state diagram of our algorithm.The algorithm swit
hes its states after the events shown in the state diagram in�gure 4.5. We use a standard integration method to 
ompute the streamline, �rst. InDepartment of Computer S
ien
e, University of Kaiserslautern, Germany



Closed Streamlines in Flow Visualization 47this step we only 
he
k for 
ell 
y
les. This saves 
omputational time sin
e the 
he
kingof all the exits is rather expensive. If we dete
t a 
ell 
y
le we have to �nd all potentialexit points. After that we need to validate ea
h of the potential exit points to �gure outif there is a real exit point among them. If this is the 
ase we did not run into a 
losedstreamline yet. Therefore we 
ontinue with the standard integration. The algorithmexits if we 
ould not �nd a real exit point among all the potential exit points or if werea
hed a 
riti
al point or the boundary of the ve
tor �eld.Remark 4.1.8Theorem 4.1.6 guarantees that our algorithm dete
ts 
losed streamlines if we 
he
k everypotential exit point.

Figure 4.6: Exits of a 
ell 
y
le.Figure 4.6 shows a real example of our algorithm. There we start a streamline nearthe sour
e in the 
enter of the �gure. This streamline spirals until we �nd the �rst 
ell
y
le. We stopped the integration there for this example. The �gure also shows all exitsand its ba
kward integrated streamlines. The streamline itself is 
olored bla
k. The gridis displayed in a lighter 
olor. In this example, every potential exit point is shown. We
an see that potential exit points whi
h are passed by a ba
kward integrated streamlinedo not ne
essarily need to be investigated be
ause if the ba
kward integrated streamlineleaves the 
ell 
y
le the other one will also do. Figure 4.7 shows this in detail. Therethe ba
kward integrated streamline starting at Exit 2 also has to leave the 
ell 
y
lebe
ause it 
annot 
ross the ba
kward integrated streamline starting at Exit 1. In theDepartment of Computer S
ien
e, University of Kaiserslautern, Germany
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Figure 4.7: Exit of the 
ell 
y
le whi
h does not need to be investigated.other 
ase, where the ba
kward integrated streamline started at Exit 1 stays inside the
ell 
y
le, we have to 
ontinue the a
tually investigated streamline, anyway.Sin
e the streamline spirals from the inner region to the outside, we only have to
onsider the potential exits in that dire
tion. In the example, every ba
kward integratedstreamline leaves the 
ell 
y
le. Consequently, there is a limit 
y
le in this 
ell 
y
lewhi
h 
an be lo
alized as des
ribed in the next se
tion.4.2 Exa
t Lo
ation of Closed StreamlinesSin
e we know a region that is never left by the streamline we 
an �nd the exa
t positionof the 
losed streamline using the Poin
ar�e map. This map is des
ribed in detail in thesubse
tion 2.5.2.To �nd the exa
t position of the 
losed streamline we 
an use the edge where wedete
ted the 
ell 
y
le as a Poin
ar�e se
tion. Then we only have to �nd the �xed pointof the Poin
ar�e map. We use a binary sear
h to �nd this �xed point: we divide the edgewhere we dete
ted the 
ell 
y
le into two parts. At the mid point we start a streamline tosee whi
h part of the edge is interse
ted by the streamline after one full turn. Sin
e thestreamline 
annot leave the 
ell 
y
le, it is guaranteed that the streamline interse
ts onepart of the edge. Then, this part is subdivided again and we start another streamlineat the mid point. This pro
ess 
ontinues until we are 
lose enough to the �xed point ofthe Poin
ar�e map. We use the length of the part of the edge as a stopping 
riterion.This �xed point gives us a point lying on the 
losed streamline. If we start anotherstreamline at that point this streamline will follow the 
losed streamline we are lookingfor. After one turn, i.e. after rea
hing the start point again, we know the exa
t lo
ationof the 
losed streamline.Department of Computer S
ien
e, University of Kaiserslautern, Germany
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Figure 4.8: Simple ve
tor �eld with limit 
y
le.The �rst example is a ve
tor �eld that 
ontains only one 
losed streamline. It issampled on a regular grid using a slightly 
hanged Van der Pol's equation. The de�ningequation for the ve
tor �eld V isV�xy� = �y � x3 + �x�x � : (4.1)

Figure 4.9: Simple ve
tor �eld with no limit 
y
le.
Department of Computer S
ien
e, University of Kaiserslautern, Germany
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ording to Hirs
h and Smale[HS74℄ a limit 
y
le o

urs if we set 0 < � � 1.An analysis of the �eld shows that we have a sour
e at (0; 0). When starting ouralgorithm near that singularity it integrates the streamline until it dete
ts the limit 
y
leas shown in �gure 4.8. Figure 4.8 also in
ludes the hedgehog of the ve
tor �eld, a glyphvisualization method where we use arrows representing the ve
tors at the 
orrespondingposition. The arrows are twi
e as long as the ve
tors of the �eld.In �gure 4.9, we investigate a ve
tor �eld whi
h spirals from the singularity to theouter regions. Again, we used equation 4.1 but we set � = �0:02 to 
ompute theve
tor �eld. Consequently, there is no limit 
y
le in the ve
tor �eld. Our algorithm
orre
tly fails to dete
t one, when started near the singularity at (0; 0) and 
ontinuesthe streamline 
omputation until it rea
hes the boundary of the ve
tor �eld. Here, alsothe hedgehog of the ve
tor �eld is displayed s
aled by a fa
tor of two.

Figure 4.10: Vorti
ity ve
tor �eld of a turbulent 
ow { hedgehog.Department of Computer S
ien
e, University of Kaiserslautern, Germany
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Figure 4.11: Vorti
ity ve
tor �eld of a turbulent 
ow { limit 
y
les.

Figure 4.12: Vorti
ity ve
tor �eld visualized by the topologi
al skeleton in
luding 
losedstreamlines. Department of Computer S
ien
e, University of Kaiserslautern, Germany



52 Dete
tion and Visualization in Planar FlowsThe third example is a simulation of a swirling jet with an in
ow into a steadymedium. The simulation originally resulted in a three dimensional ve
tor �eld but weused a 
utting plane and proje
ted the ve
tors onto this plane to get a two dimensional�eld. This dataset was provided by Prof. Kollmann from the me
hani
al engineeringdepartment at the University of California at Davis. In this appli
ation one is interestedin investigating the turbulen
e of the ve
tor �eld and in regions where the 
uid staysvery long. This is ne
essary be
ause some 
hemi
al rea
tions need a spe
ial amount oftime. These regions 
an be lo
ated by �nding 
losed streamlines. Figure 4.10 shows thehedgehog of that ve
tor �eld s
aled by a fa
tor of two. In �gure 4.11 one 
an see some ofthe 
losed streamlines dete
ted by our algorithm. All these limit 
y
les are lo
ated in theupper region of the ve
tor �eld. Additionally �gure 4.11 in
ludes the hedgehog wherethe arrows representing the ve
tors are four times longer than the 
orresponding ve
tor.Figure 4.12 shows all 
losed streamlines of this ve
tor �eld in
luding the topologi
alskeleton.To 
ompare our enhan
ements with usual streamline 
omputation methods, we im-plemented an algorithm whi
h 
omputes the topologi
al skeleton as des
ribed in [HH91℄.Therefore we have to determine the singularities. Then we start a streamline at ea
hsaddle point displa
ed a little bit in positive and negative eigendire
tion of both eigen-ve
tors. Remind that our algorithm does not need any exit 
onditions other than thedete
tion of 
losed streamlines or rea
hing a singularity or the border of the data!To get an idea of the 
omputational 
ost of our method we also implemented asimple ODE solver to 
ompute the streamlines. The ve
tor �eld shown in �gure 4.10
ontains 337 singularities. The algorithm using a simple ODE solver needed 738 se
ondsto 
ompute the topologi
al skeleton on a Pentium II 350 MHz. Using our streamlineintegration method, whi
h uses the same ODE solver but 
he
ks for limit 
y
les, weonly needed 604 se
onds on the same system whi
h is 18 per
ent faster! The reason forthat is that we do not need to wait until the ODE solver rea
hes a 
ertain number ofsteps if we run into a limit 
y
le. This saves some time whi
h we 
an use to 
he
k forlimit 
y
les.4.4 LimitationsIf more than one 
losed streamline 
rosses the same 
ell, the algorithm may fail to dete
tthese 
losed streamlines. For instan
e, there is a stru
tural unstable 
on�guration withone 
losed streamline inside the other. One 
losed streamline a
ts like a sour
e, letssay the inner one, while the other one behaves like a sink so that the 
ow starts at the�rst and is attra
ted by the se
ond one. Sin
e there is an out
ow out of the 
ell thealgorithm 
annot distinguish between a regular out
ow and this 
on�guration.Figure 4.13 shows an example for su
h a 
on�guration. The 
ow dire
tion inside the�rst 
losed streamline is the same than behind the se
ond one. It looks the same as ifDepartment of Computer S
ien
e, University of Kaiserslautern, Germany
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Figure 4.13: Unstable 
losed streamlines.there are no 
losed streamlines at all. Consequently, the algorithm fails to dete
t both
losed streamlines.
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Chapter 5Parallel Dete
tion of ClosedStreamlinesTo determine the 
losed streamlines of a ve
tor �eld many streamlines have to be 
om-puted. In fa
t, we 
ompute the topologi
al skeleton. This graph leads us to the 
losedstreamlines. Sin
e the number of streamlines may be large depending on the given ve
-tor �eld, this may take several minutes or even hours, espe
ially sin
e we also have to
ompute even more ba
kward integrated streamlines. Therefore we 
reated a parallelversion of this algorithm to de
rease 
omputational time by distributing the streamline
omputation to several 
lients. Some more information on 
on
urrent programming 
anbe found in the literature [S
h97℄[Mul93℄ [Ung97℄[Aga89℄.First, we des
ribe some parallel ma
hines that 
an be used for our algorithm. Thentwo di�erent parallelization methodologies are dis
ussed in the next se
tion. In the endof this 
hapter we show the results in
luding di�erent timings on several test systems.5.1 Parallel Ma
hinesIn this se
tion we des
ribe brie
y some parallel ma
hines, the Cray/SGI T3E, the IBMRS/6000 SP, and Linux 
lusters. The �rst one uses a distributed shared memory 
on
eptwhile the other two ones do not share their memory at all.5.1.1 Cray/SGI T3EThe Cray/SGI T3E is available sin
e 1996. It is a distributed shared memory systemwhere every node shares its memory with all the others. It uses a virtual address spa
eto a

ess the memory that is spread among all nodes. The pro
essor used for the nodes isthe DEC Alpha pro
essor 21164. This pro
essor 
onsists of two integer and two 
oatingpoint units with IEEE 64 bit arithmeti
. It has an eight KB �rst level and 96 KB se
ondDepartment of Computer S
ien
e, University of Kaiserslautern, Germany
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tion of Closed Streamlineslevel 
a
he dire
tly on the 
hip.The GigaRing te
hnology based on the IEEE SCI standard is used to 
onne
t thenodes. Every node is bi-dire
tional 
onne
ted to its neighbor in a three dimensionalnetwork topology.5.1.2 IBM RS/6000 SPThe IBM RS/6000 SP uses POWER4 mi
ropro
essors. This type of pro
essor has anSMP-on-a-
hip design. It 
onsists of two 1.3 GHz pro
essors in
luding se
ond level
a
he dire
tly on one 
hip. Every node has its own memory. So the parallel programhas to use a message passing system as for instan
e PVM or MPI.

N15
N14
N13
N12

N11
N10
N9
N8

N7
N6
N5
N4

N3
N2
N1
N0

Figure 5.1: HPS basi
 element of an IBM RS/6000 SP for 16 nodes.Up to sixteen nodes are grouped together in a network 
on�guration as shown in�gure 5.1 using high performan
e swit
hes (HPS). If more than sixteen nodes are usedseveral of these groups have to be inter
onne
ted.5.1.3 Linux ClustersWith Linux 
lusters there are no restri
tions 
on
erning network topology, memory, orCPU speed. Almost every standard PC 
omponent 
an be used in a Linux 
luster.Even several desktop Linux 
omputers that are 
onne
ted through an Ethernet 
an beDepartment of Computer S
ien
e, University of Kaiserslautern, Germany
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alled a Linux 
luster. But usually the network is the bottlene
k in su
h a system.Therefore faster network devi
es like for instan
e a GigaBit network devi
e or Myrinethost interfa
e is used. A 
at, tree shaped network topology is possible for a Linux
luster. But espe
ially with a greater number of nodes a network with routes from anyto any other node is desirable to avoid 
ollisions and fa
ilitate faster transfers.Be
ause of their low pri
es and the great s
alability Linux 
lusters be
ome more andmore popular. They also appear nowadays in the list of the top 500 Super
omputerSites.5.1.4 Comparison Cray/SGI T3E IBM RS/6000 SP Linux ClusterPro
essor type DEC Alpha 21164 p690 server (dual) e.g. AthlonNumber of pro
essors up to 2176 up to 16 unlimitedMemory size (per node) 512 MB { up to 3 GBClo
k speed (per node) up to 675 MHz up to 1.3 GHz up to 2GHzNetwork bandwidth 500 MB/s 500 MB/s up to 250 MB/sPeak Performan
e 3 TFLOPS 2.6 TFLOPS unlimitedFigure 5.2: Te
hni
al spe
i�
ations of di�erent parallel ma
hines.The main advantage of Linux 
lusters is the low pri
e of standard PC 
omponents. Itis very extendable be
ause there is no limit in the number of nodes used in the 
luster. Inprin
iple, you only have to add a new 
omputer to the network to in
rease 
omputationalpower. The pro
essors are faster than the ones used for both other parallel ma
hines.The advantage of both, the Cray/SGI T3E and the IBM RS/6000 SP, is the fasternetwork. Both 
ommer
ial systems are limited with respe
t to extendability. Figure 5.2shows some te
hni
al spe
i�
ations of the three di�erent parallel ma
hines. Altogether,a Linux 
luster is the best way to get a great performan
e at a low pri
e.5.2 Parallel AlgorithmTo 
ompute the 
losed streamlines there are two di�erent tasks. First, we have to
ompute the 
riti
al points in the given ve
tor �eld. The se
ond task is to 
ompute the
losed streamlines by determining the topologi
al skeleton. The next two subse
tionsdes
ribe these tasks in detail.Department of Computer S
ien
e, University of Kaiserslautern, Germany



58 Parallel Dete
tion of Closed Streamlines5.2.1 Parallel Computing of Criti
al PointsTo parallelize this algorithm we have to 
ompute all the 
riti
al points that are presentin the ve
tor �eld, �rst. Sin
e we only need the data of the 
ells, i.e. the position ofthe verti
es and the ve
tors at these verti
es, to determine if there exists a 
riti
al pointinside the 
ell and where it is lo
ated, we 
an transfer these tasks to the various 
lientsof the 
luster. When the 
lients re
eive the index of a 
ell they 
ompute the 
riti
alpoint and return the position and its type, if they have found one, to the server. Alltasks are 
ontrolled by a s
heduler whi
h is a part of the server.
receive task

execute task

send resultreceive result

create task

get next task

spool task

ClientServer
Scheduler

Figure 5.3: S
heduling of the tasks.The s
heduling of the tasks works as follows: the server 
reates one task for ea
h
ell 
ontaining the index of this 
ell and queues it in the s
heduler. The s
heduler itself
he
ks if there are still tasks left and if there is any 
lient that has �nished its task yet.If there is more than one 
lient without an a
tive job, the fastest is 
hosen. Then thenext task is sent to this 
lient. The 
lient re
eives this task, 
omputes the 
riti
al pointand sends it, if it has found one, ba
k to the server and tells the s
heduler that it has�nished its job. Sin
e the amount of data to 
ontrol the 
lients and transfer the 
riti
alpoints ba
k to the server is very low, we 
an fully bene�t from the performan
e of ea
h
lient.5.2.2 Determining Closed Streamlines in ParallelA

ording to the motivation there exist two di�erent approa
hes for parallelization. Weexperimented with both approa
hes to �nd the best one. There are dis
ussed in detailin the following.Department of Computer S
ien
e, University of Kaiserslautern, Germany
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Server

Client2 Client3 ClientN

Dataset Scheduler

Client1

Cache Cache Cache CacheFigure 5.4: Con�guration of the parallel program.5.2.2.1 Subdivision Approa
hIn our �rst approa
h every 
lient got its data from the server. Computing streamlines isa global task sin
e it is not known whi
h region of the ve
tor �eld this streamline may
ross. Therefore it is not possible to simply subdivide the whole dataset into severalregions. If we want to subdivide into several regions we have to restart the streamlinein another task if it leaves su
h a region. This usually results in a poor load balan
ingsin
e it is likely that there are regions that are 
rossed by only few streamlines. It ispossible to swit
h regions in a parti
ular task. But again, we do not know if a streamline
rossed exa
tly that region we just ex
hanged.Therefore we tried a di�erent approa
h where ea
h request to the dataset on one ofthe 
lients results in questioning the server using PVM[GBD+94℄. Figure 5.4 shows the
on�guration. We use 
a
hes to avoid asking the server for the same data repeatedly. Butdue to the slow network 
onne
tion and the long start-up time for 
ommuni
ating underPVM the transfer of the data took more time than the 
omputation of the streamlineeven when we used a GigaBit-
onne
tion. As a result the parallel version using su
h asubdivision approa
h uses more time than the sequential version.5.2.2.2 Task Driven Approa
hAfter we have 
omputed all 
riti
al points, we start streamlines at ea
h saddle point inpositive and negative eigendire
tion with respe
t to the matrix of the linear interpolantand 
he
k for 
losed streamlines while 
omputing the streamlines as previously des
ribed.Computing streamlines is not a lo
al task sin
e the streamlines may 
ross any regionof the 
ow. Therefore we do not subdivide the data into several blo
ks like in somerendering tasks [IAO94℄. Our implementation uses an approa
h where we 
reate severaltasks ea
h of them representing the whole 
omputation of one streamline starting at agiven position. Then we use the s
heduler to distribute the tasks to the various 
lientsof our 
luster.Sin
e the data of the ve
tor �eld in
luding o
tree and the program �t into 64 MBDepartment of Computer S
ien
e, University of Kaiserslautern, Germany
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Server

Client1 Client2 Client3 ClientN

Dataset Scheduler

Dataset Dataset DatasetDatasetFigure 5.5: Con�guration of the parallel program.of RAM we de
ided to use a 
on�guration where every 
lient loads the whole datasetinto its own memory. This fa
ilitates the fastest possible a

ess to the data. Sin
e theserver and every 
lient load the data at the same time there is no time lost be
auseotherwise the 
lients would simply wait for the server until it has loaded the dataset.When dealing with larger datasets we have to use an out of 
ore method whi
h will bedone in the future.Sin
e we want to spread tasks that represent the whole 
omputation of one stream-line, ea
h task 
ontains two items: a point where the streamline has to start and theintegration dire
tion. The other data that is needed for the 
omputation is alreadypresent at ea
h 
lient be
ause the 
lient has loaded the whole dataset yet. Due to theminimal amount of data of ea
h task the 
ommuni
ation 
ost whi
h is produ
ed bymigrating tasks is very low.To distribute the tasks to the various 
lients we use the previously des
ribed s
hed-uler: the server determines the start positions of the streamline using ea
h saddle pointfound in the ve
tor �eld. Then a task 
ontaining this start position and the integrationdire
tion is 
reated and spooled into the queue of the s
heduler, while the s
hedulersends the next job to the fastest 
lient that has no a
tive job. The 
lient re
eives thistask, sear
hes for 
losed streamlines and sends it, if it has found one, ba
k to the server.Again, the amount of data to 
ontrol the 
lients and transfer the 
losed streamlinesba
k to the server is very low, so that we 
an fully bene�t from the performan
e of ea
h
lient.5.3 ResultsOur algorithm is implemented in C++, while the server 
ommuni
ates with the 
lientsusing PVM[GBD+94℄. The di�erent tasks are en
apsulated in C++-
lasses. This fa-
ilitates that the tasks 
an transfer themselves to the 
lient on demand and the 
lientsonly need to 
all a method to exe
ute the re
eived task.To test the performan
e of our implementation we mainly use two di�erent systems.Department of Computer S
ien
e, University of Kaiserslautern, Germany
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luster 
onsisting of seven 
lients. Ea
h node is equipped with anAMD Duron 600 or AMD Duron 700 pro
essor and 64 MB of RAM. The server is amultipro
essor 
omputer with two Pentium III 500 pro
essors. The se
ond system isbased on some of our desktop 
omputers with a Pentium II 350. We use Linux andnormal PC 
omponents sin
e this is a 
heap way to get a great performan
e 
omparedto other parallel 
omputers. In order to get a more heterogeneous 
on�guration we mixboth systems by using all Linux 
omputers available in our group for a last performan
etest.As a test dataset we use the same simulated dataset as in the previous 
hapter. Theve
tor �eld has 362 
riti
al points and for the topology in
luding 
losed streamlinesabout six hundred streamlines have to be 
omputed.Pro
essor Floating-point indexPentium II 350 2.404Pentium III 500 3.561AMD Athlon 650 5.163AMD Duron 600 4.768AMD Duron 700 5.547Intel Celeron 800 6.125AMD Thunderbird 1400 11.227Figure 5.6: Floating-point indi
es of the di�erent pro
essors.To determine the optimal timing of our algorithm we used the ben
hmark utilitynben
h1 in order to get a suitable ratio between the speeds of the pro
essors. Nben
h isa port to Linux/Unix of release 2 of BYTEMagazine's BYTEmark ben
hmark program2.We 
omputed the 
oating-point index of ea
h pro
essor whi
h gives the relative speedof the 
oating-point unit 
ompared to an AMD K6-233 pro
essor. The results 
an befound in �gure 5.6. Using these values we 
omputed the 
oating-point index of the wholeparallel ma
hine by summing up the indi
es 
orresponding to the involved pro
essorsand 
al
ulated the optimal runtime by negle
ting the 
ommuni
ation 
ost between serverand 
lients.Figures 5.7 and 5.8 show the timings on the desktop 
omputers. The 
luster 
onsistsof up to �ve ma
hines. The optimal timings are displayed using a dashed line while thereal timings are shown by a solid line. This 
on�guration is very suitable for testing thes
alability of our implementation be
ause every 
omputer has identi
al performan
e.Obviously, the 
omputation time is halved if the number of pro
essors is doubled whi
hindi
ates a good s
alability of our implementation.1http://www.tux.org/~mayer/linux/bmark.html2http://www.byte.
om/bmark/bmark.htmDepartment of Computer S
ien
e, University of Kaiserslautern, Germany
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2 51 3 4
processors

time

100

600

300

400

500

200

Figure 5.7: Time needed to 
ompute 
losed streamlines using Pentium PII-350 pro
es-sors displayed as graph. # CPUs Time Optimum1 612s |2 306s 306s3 205s 204s4 158s 153s5 134s 122sFigure 5.8: Time needed to 
ompute 
losed streamlines using Pentium PII-350 pro
es-sors shown in a table.The timings of the algorithm running on our Linux 
luster with up to seven 
lientsis displayed in �gures 5.9 and 5.10. Again, the optimal timings are displayed using adashed line while the real timings are shown by a solid line. Sin
e the server has twopro
essors there are always running at least two tasks at the same time on this ma
hine.Adding more 
lients to the Linux 
luster the time needed for the algorithm is redu
ed
orrespondingly to the speed of its pro
essor. Again, we 
an see that we nearly bene�tfrom the full performan
e of ea
h 
lient due to the minimal 
ommuni
ation betweenserver and 
lient as 
an be seen from the di�eren
e between the optimal and the realtimings.In our next test we also used the Linux desktop ma
hines in all the oÆ
es of ourvisualization group. This resulted in a parallel ma
hine 
onsisting of six Pentium II-350, two AMD Athlon 650, one dual pro
essor ma
hine with two Pentium III-500, fourAMD Duron 600, and three AMD Duron 700. Altogether, the algorithm used seventeenDepartment of Computer S
ien
e, University of Kaiserslautern, Germany
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processors

3018 19 20 21 22 23 24 25 26 27 28 29Figure 5.9: Time needed to 
ompute 
losed streamlines using a Linux 
luster with AMDDuron 600 and AMD Duron 700 pro
essors displayed as graph.# CPUs Time Optimum2 224s |3 138s 134s4 99s 96s5 77s 74s6 63s 61s7 53s 50s8 46s 43s9 39s 37s17 28s 24s30 17s 9sFigure 5.10: Time needed to 
ompute 
losed streamlines using a Linux 
luster withAMD Duron 600 and AMD Duron 700 pro
essors shown in a table.pro
essors and it took 28 se
onds to 
ompute all 
losed streamlines that are present inour test dataset. As expe
ted, this is faster than using the 
luster alone 
orresponding tothe speed of the pro
essors and slightly slower than the optimal runtime of 24 se
onds.This also tests our implementation in a more heterogeneous parallel ma
hine due to thedi�erent speeds of the pro
essors. It shows that we 
an de
rease the time needed forthe 
omputation by adding more pro
essors no matter what sort of ma
hine it is.Then we also added the Linux ma
hines in our student rooms for a last test. Theseare �ve ma
hines equipped with an Intel Celeron 800, two ma
hines with a PentiumIII-500, and six with an AMD Thunderbird 1400 pro
essor. So we end up with 30Department of Computer S
ien
e, University of Kaiserslautern, Germany
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essors. Our algorithm needed 17 se
onds. Compared to the optimal timing of 9se
onds this is a little bit too slow. This is due to the slow network 
onne
tion. Be
auseall 
omputers reside in di�erent areas of our working group and several other pro
essessu
h as network �le system also use this network we do not have the full bandwidthavailable. Consequently, the 
ommuni
ation 
ost is not negle
table anymore so that thereal and the optimal timings di�er.

Department of Computer S
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Chapter 6Closed Streamlines inTime-Dependent FlowsWhen dealing with 
losed streamlines one question o

urs: how does a 
losed streamlineemerge? Inspired by the books of Abraham and Shaw[AS82℄ [AS83℄ [AS84℄ [AS88℄ wevisualize the evolution of a 
losed streamline in a planar unsteady 
ow. We use the thirddimension to represent the time. The evolution of a 
losed streamline 
an be shown asa tube shaped visulization for the 
losed streamlines in the various timesteps.The singularities are used as a starting point for our investigations. Therefore webrie
y des
ribe the tra
king of the singularities in the next se
tion. This work was doneby Tri
o
he et al. [TSH01℄. Then we show how to �nd and follow a 
losed streamlineover time. In the end we explain the results of our algorithm and explain the limitationsof our method.
6.1 Tra
king Criti
al PointsWhen dealing with time-dependent two-dimensional 
ows we 
an use the third dimen-sion to represent time as des
ribed in subse
tion 2.2.4. For tra
king the 
losed stream-lines we �rst determine the behavior of the 
riti
al points. For a given 
ell, the asso
iatedinterpolant 
ontains, for ea
h value of time t, a single 
riti
al point. This is due to theaÆne linear nature inside the triangles of its restri
tion to any time plane. Letting thetime parameter t move from ti to ti+1, the 
riti
al point position des
ribes a 3D 
urve.A detailed des
ription of how to �nd the paths of the 
riti
al points 
an be found in thearti
le of Tri
o
he et al. [TSH01℄.Department of Computer S
ien
e, University of Kaiserslautern, Germany
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Figure 6.1: Closed streamlines found by the algorithm.6.2 Following Closed StreamlinesAfter tra
king the singularities, we analyze the ve
tor �eld in dis
rete timesteps. Theremust be a 
riti
al point inside ea
h 
losed streamline. Therefore, we use the 
riti
al pointpath 
ontaining a Hopf bifur
ation as a starting point for our streamline algorithm fromse
tion 4.1 whi
h dete
ts the 
losed streamline if it exists. We follow the 
riti
al pointpath in dis
rete steps in positive and negative dire
tions starting at the bifur
ation.After we have found the 
ell 
y
le 
ontaining the 
losed streamline we �nd the exa
tposition using the Poin
ar�e-map from se
tion 4.2. As a last test we have to 
he
k ifthe 
losed streamline really surrounds the 
riti
al point. This is ne
essary be
ause thestreamline may have ran into another 
losed streamline in a totally di�erent region of the
ow. Obviously, 
losed streamlines surrounding the 
riti
al point o

ur only in one ofthe two temporal dire
tions. We 
ontinue by stepping forward in the temporal dire
tionuntil the 
losed streamlines rea
h either another bifur
ation whi
h breaks them up orthe border of the grid.Figure 6.1 shows the result of this step. Here we have found the 
losed streamlinesat various timesteps. The 
losed streamlines are approximated by several line segments.The paths of the 
riti
al points are also shown using the same 
olors as in the originalpaper [TSH01℄. The Hopf bifur
ation, where we started to dete
t the 
losed stream-lines, is marked with a yellow sphere. The di�erent bifur
ation types are des
ribed inse
tion 2.8. In this example the life 
y
le of the 
losed streamline is started by a HopfDepartment of Computer S
ien
e, University of Kaiserslautern, Germany
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Figure 6.2: Closed streamlines visualized as a tube over time.bifur
ation and terminated by a Periodi
 Blue Sky in 2D bifur
ation.To visualize the evolution of 
losed streamlines, we 
onstru
t tubes from the various
losed streamlines similar to the pi
tures by Abraham and Shaw [AS88℄. We 
onstru
tsurfa
es 
onsisting of triangles whi
h 
onne
t the approximating line segments of the
losed streamlines. The bifur
ation point is 
onne
ted to the tube using a paraboli
surfa
e approximated with triangles. The result is shown in �gure 6.2.6.3 ResultsTo test our method, we have 
reated a syntheti
 ve
tor �eld 
ontaining four 
riti
alpoints. The position of the 
riti
al points is a fun
tion of time, des
ribing 
losed 
urvesin the plane. We have sampled this ve
tor �eld on a triangular point set for severalvalues of the time parameter. The rotation of the 
riti
al points (ea
h with a spe
i�
frequen
y) entails many stru
tural 
hanges for the topology. This is very interesting forour purpose sin
e all di�erent types of bifur
ations whi
h 
reate 
losed streamlines arepresent.Figure 6.3 shows the result of our algorithm, where the 
losed streamlines are shownas red tubes. The upper one and the one on the right are started and terminated by HopfDepartment of Computer S
ien
e, University of Kaiserslautern, Germany
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Figure 6.3: Closed streamlines found in a syntheti
 test dataset.

Figure 6.4: Detailed view of a Hopf bifur
ation.bifur
ations { shown as a yellow sphere { while the lower 
losed streamline starts at aHopf bifur
ation and is terminated by a Periodi
 Blue Sky in 2D bifur
ation. Sin
e thereis a 
riti
al point inside the 
ell 
y
le, i.e. the saddle, the 
ow behaves totally di�erentdepending on where a streamline passes the saddle. Therefore the exa
t lo
alizationfails when we are too 
lose to the 
riti
al point.Figures 6.4 and 6.5 show some detailed views of the di�erent bifur
ations. Also someDepartment of Computer S
ien
e, University of Kaiserslautern, Germany
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Figure 6.5: Detailed view of a Periodi
 Blue Sky in 2D bifur
ation.
streamlines are drawn to show how these streamlines 
ir
le around the limit 
y
le butnever 
ross it. Figure 6.4 is a 
losed streamline started by a Hopf bifur
ation. Thebifur
ation is lo
ated in the lower left 
orner. In �gure 6.5 the 
losed streamline isstarted by a Hopf bifur
ation lo
ated in the upper left 
orner. It grows in size until it isterminated by a Periodi
 Blue Sky in 2D bifur
ation. Consequently, the tube visualizingthe evolution of the 
losed streamline does not get 
losed.Another dataset we used is a simulation of a swirling jet with an in
ow into a steadymedium. The simulation uses a 
ylindri
al domain and assumes rotational symmetry, sothat we are left with a two-dimensional ve
tor �eld on a plane through the 
enter axis ofthe 
ylinder. In this appli
ation one is interested in investigating the turbulen
e of theve
tor �eld and in regions where the 
uid stays very long. Swirling jets play a signi�
antrole in many 
ombustion pro
esses. It is important to �nd su
h re
ir
ulation regionsindi
ated by 
losed instantaneous streamlines. To avoid visual 
lutter we use only apart of the dataset for our visualization. Figure 6.6 shows the result of our algorithm.The 
riti
al point paths are also shown where saddles are 
olored red, sinks are green,and sour
es are visualized using blue 
olor. Obviously, in regions where only one saddlepoint is involved, we 
annot �nd any 
losed streamline due to the types of bifur
ationsexplained in se
tion 2.8. Most of the 
losed streamlines emerge at Hopf bifur
ationswhi
h are marked with a yellow sphere. Therefore, 
losed streamlines are found wheresour
es and sinks alternate while time propagates, so that we are able to identify theregions where the 
uid stays very long.Department of Computer S
ien
e, University of Kaiserslautern, Germany
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Figure 6.6: Closed streamlines found in a vorti
ity dataset.6.4 LimitationsDue to the unstable 
on�guration of the homo
lini
 
onne
tions of the periodi
 bluesky in 2D bifur
ation we a
tually fail to rea
h the bifur
ation exa
tly. Our implementa-tion terminates the tube representing the 
losed streamline slightly too early. Anothermissing feature in this implementation is to �nd several 
losed streamlines around one
riti
al point. This 
an be a

omplished by 
ontinuing the integration pro
ess. Thetime sli
e has to be 
he
ked for 
losed streamlines again near the last limit 
y
le thatwas found.
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ien
e, University of Kaiserslautern, Germany



Closed Streamlines in Flow Visualization 71
Chapter 7Closed Streamlines in 3D Ve
torFields
Closed streamlines 
an be found in three dimensional ve
tor �elds also. For instan
e,the Terrestrial Planet Finder Mission of NASA deals with stable manifolds where 3Dperiodi
 halo orbits play an important role. These orbits are nothing else than 
losedstreamlines in a three dimensional ve
tor �eld. Figure 7.1 shows an example.

Figure 7.1: Terrestrial Planet Finder Mission (image 
ourtesy of Ken Museth,Calte
h[MBL01℄).
The next se
tion des
ribes how to dete
t 
losed streamlines in three dimensionalve
tor �elds. It shows the di�eren
es between the two dimensional 
ase both in theoryand the algorithm itself. In the end we present the results of the algorithm.Department of Computer S
ien
e, University of Kaiserslautern, Germany
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Figure 7.2: Ba
kward integrated surfa
e.7.1 Dete
ting Closed Streamlines in 3D Ve
torFieldsAlthough the prin
iple to dete
t 
losed streamlines in a three dimensional ve
tor �eldis similar to the two dimensional 
ase there are some di�eren
es. We will des
ribe thetheoreti
al and algorithmi
 di�eren
es and similarities in the next two subse
tions.7.1.1 TheoryThe data is given on a tetrahedral grid. But the prin
iple should work on other 
elltypes as well. The dete
tion of a 
ell 
y
le works the same as in de�nition 4.1.2. Of
ourse, the 
ells are three dimensional in this 
ase. To 
he
k if we 
an leave the 
ell
y
le we have to 
onsider every ba
kward integrated streamline starting at an arbitrarypoint on a fa
e of the boundary of the 
ell 
y
le. Looking at the edges of a fa
e we 
ansee dire
tly that it is not suÆ
ient to just integrate streamlines ba
kwards. Figure 7.2shows an example. We integrated a streamsurfa
e ba
kwards starting at an edge ofthe 
ell 
y
le. The streamlines starting at the verti
es of that edge leave the 
ell 
y
leearlier than the 
omplete surfa
e. So it may be possible that a part of the streamsurfa
estays inside the 
ell 
y
le although the ba
kward integrated streamlines starting at theverti
es leave it. Consequently, we have to �nd another de�nition for exits.Department of Computer S
ien
e, University of Kaiserslautern, Germany



Closed Streamlines in Flow Visualization 73De�nition 7.1.1 (Potential Exit Edges)Let C be a 
ell 
y
le in a given tetrahedral grid G as in De�nition 4.1.2. Then we 
allevery edge at the boundary of the 
ell 
y
le a potential exit edge. Analogue to the twodimensional 
ase we de�ne a line on a boundary fa
e where the ve
tor �eld is tangentialto the fa
e as a potential exit edge also.Due to the fa
t that we use linear interpolation inside the tetrahedrons we 
an showthat there will be at least a straight line on the fa
e where the ve
tor �eld is tangentialto the fa
e or the whole fa
e is tangential to the ve
tor �eld.Theorem 7.1.2Let F be a triangular fa
e of a tetrahedral. The ve
tors v1, v2, and v3 are the ve
torvalues and p1, p2, and p3 the positions of the verti
es of the fa
e F . The ve
tors insidethe tetrahedron are interpolated linearly. Then all ve
tors that are tangential to the fa
eare on a straight line or all ve
tors inside the fa
e are tangential.Proof:Let v1, v2, v3, p1, p2, and p3 the ve
tors of respe
tively positions at the verti
es of thefa
e F . Let n be an orthogonal ve
tor to the fa
e F . We 
an interpolate a ve
tor insidethe fa
e F by using the bary
entri
 
oordinates:v = � � v1 + � � v2 + 
 � v3Every ve
tor that is tangential to the fa
e F is orthogonal to the ve
tor n. Therefore:n � v = �n � v1 + �n � v2 + 
n � v3A property of the bary
entri
 
oordinates is that they sum up to 1:� + � + 
 = 1So we have two equations and three variables. This leads to an at least one dimensionalsolution of linear equations if there is any solution. ❏Remark 7.1.3Be
ause of theorem 7.1.2 we do not need to 
onsider any isolated point on a fa
e wherethe ve
tor �eld is tangential to the fa
e be
ause this 
annot o

ur.When dealing with edges as exits we have to 
ompute a streamsurfa
e instead ofstreamlines to 
onsider every point on an exit edge. This leads us to the followingnotation.Notation 7.1.4 (Ba
kward integrated streamsurfa
e)We use the term ba
kward integrated streamsurfa
e to des
ribe the streamsurfa
ewe integrate by inverting the ve
tors of the ve
tor �eld starting at a potential exit edgein order to validate this exit edge.Department of Computer S
ien
e, University of Kaiserslautern, Germany



74 Closed Streamlines in 3D Ve
tor FieldsAnalogue to de�nition 4.1.5 we de�ne real exit edges.De�nition 7.1.5 (Real exit edge)Let E be a potential exit edge of a given 
ell 
y
le C as in de�nition 7.1.1. If theba
kward integrated streamsurfa
e does not 
ompletely leave the 
ell 
y
le after one fullturn through C then this edge is 
alled a real exit edge.For the ba
kward integrated streamsurfa
e we use a simpli�ed version of the stream-surfa
e algorithm introdu
ed by Hultquist [Hul92℄. Sin
e we do not need a triangulationof the surfa
e we only have to pro
ess the integration step of that algorithm. Initially,we start the ba
kward integration at the verti
es of the edge. If the distan
e betweenthese two ba
kward integrations is greater than a spe
ial error limit we start a newba
kward integration in between. This 
ontinues with the two neighboring integrationpro
esses until we have 
reated an approximation of the streamsurfa
e that respe
ts thegiven error limit.

Figure 7.3: Ba
kward integration in one 
ell.The integration stops if the whole streamsurfa
e leaves the 
ell 
y
le or if we have
ompleted one full turn through the 
ell 
y
le. But to 
onstru
t the surfa
e properlywe may have to 
ontinue a ba
kward integration pro
ess a
ross the boundary of the 
ell
y
le. This is due to the fa
t that some part of the streamsurfa
e is still inside the 
ellbut the ba
kward integrated streamline has already left it. Figure 7.3 shows a simpli�edexample. Both streamlines at the left and right edge of the surfa
e leave the 
ell, in fa
tthey leave right after they started. But the integration pro
ess must be 
ontinued untilthe whole surfa
e, 
reated inside the 
ell by these two streamlines, leaves the 
ell.Department of Computer S
ien
e, University of Kaiserslautern, Germany



Closed Streamlines in Flow Visualization 75With these de�nitions and motivations we 
an formulate the main theorem for ouralgorithm:Theorem 7.1.6Let C be a 
ell 
y
le as in de�nition 4.1.2 with no singularity inside and E the set ofpotential exit edges. If there is no real exit edge among the potential exit edges E orthere are no potential exit edges at all then there exists a 
losed streamline inside the
ell 
y
le.Proof: (Sket
h)Let C be a 
ell 
y
le with no real exit edges. Every ba
kward integrated streamsurfa
eleaves the 
ell 
y
le C 
ompletely. As in the 2D 
ase it is obvious that we 
annot leavethe 
ell 
y
le if every ba
kward integration starting at an arbitrary point on a fa
e ofthe boundary of the 
ell 
y
le C leaves the 
ell 
y
le. So we have to prove that thea
tually integrated streamline 
annot leave the 
ell 
y
le C.We look at ea
h fa
e of the boundary of the 
ell 
y
le C. Let Q be an arbitrarypoint on a fa
e F of the boundary of the 
ell 
y
le C. Let us assume that the ba
kwardintegrated streamline starting at Q 
onverges to the a
tually investigated streamline.We have to show that this is a 
ontradi
tion.First 
ase: The edges of fa
e F are exit edges and there is no point on F where theve
tor �eld is tangential to F .From a topologi
al point of view the streamsurfa
es starting at all edgesof F build a tube and leave the 
ell 
y
le. Sin
e the ba
kward integratedstreamline starting atQ 
onverges to the a
tually investigated streamlineit does not leave the 
ell 
y
le. Consequently, it has to 
ross the tubebuilt by the streamsurfa
es. This 
ontradi
ts theorem 2.1.8 be
ausestreamlines 
annot 
ross ea
h other and therefore a streamline 
annot
ross a streamsurfa
e.Se
ond 
ase: There is a potential exit edge e on the fa
e F that is not a part of theboundary of F .Obviously, the potential exit edge e divides the fa
e F into two parts. Inone part there is out
ow out of the 
ell 
y
le C while at the other partthere is in
ow into C. We do not need to 
onsider the part with out
owany further be
ause every ba
kward integrated streamline starting at apoint of that part immediately leaves the 
ell 
y
le C.The ba
kward integrated surfa
e starting at the potential exit edge e andparts of the ba
kward integrated streamsurfa
es starting at the boundaryedges of the fa
e F build a tube again from a topologi
al point of view.Consequently, the ba
kward integrated streamline starting at Q has toleave the 
ell 
y
le C.Department of Computer S
ien
e, University of Kaiserslautern, Germany



76 Closed Streamlines in 3D Ve
tor FieldsWe have shown that the ba
kward integrated streamline starting at the point Q hasto leave the 
ell 
y
le also. Sin
e there is no ba
kward integrated streamline 
onvergingto the a
tually investigated streamline at all, the streamline will never leave the 
ell
y
le. ❏7.1.2 AlgorithmWith theorem 7.1.6 we are able to des
ribe our algorithm in detail. It is quite similarto the two dimensional 
ase and mainly 
onsists of three di�erent states:
➊ streamline integration: identifying one 
ell 
hange after the other, 
he
k at ea
h
ell if we rea
hed a 
ell 
y
le.
➋ 
he
king for exits: going ba
kwards through the 
rossed 
ells and looking forpotential exit edges.
➌ validating exit: integrating ba
kwards a streamsurfa
e from potential exit edgesthrough the whole 
ell 
y
le.

Figure 7.4: Closed streamline in
luding 
ell 
y
le and ba
kward integrations.Department of Computer S
ien
e, University of Kaiserslautern, Germany



Closed Streamlines in Flow Visualization 77Figure 7.4 shows an example of our ba
kward integration step. There, also the 
losedstreamline and the 
ell 
y
le is shown. Every ba
kward integrated streamsurfa
e leavesthe 
ell 
y
le. A

ording to theorem 7.1.6, there exists a 
losed streamline inside this
ell 
y
le. Then we 
an �nd the exa
t lo
ation by 
ontinuing the integration pro
ess ofthe streamline that we a
tually investigate until the di�eren
e between two su

essiveturns is small enough. This numeri
al 
riterion is suÆ
ient in this 
ase sin
e we haveshown that the streamline will never leave the 
ell 
y
le.7.2 Results

Figure 7.5: Symmetri
 two dimensional ve
tor �eld.To test our implementation we 
reated a syntheti
 dataset whi
h in
ludes one 
losedstreamline. We �rst produ
ed a two dimensional ve
tor �eld. Figure 7.5 shows thisve
tor �eld. To get an idea of the stru
ture a hedgehog visualization is in
luded. Theve
tor �eld 
ontains a saddle singularity in the 
enter and two symmetri
al sinks. Thetopologi
al skeleton is shown also. To get a three dimensional 
ow we rotated the twodimensional ve
tor �eld around the y-axis. Due to the symmetri
al arrangement of thesinks this ve
tor �eld in
ludes exa
tly one 
losed streamline. Figure 7.6 shows the resultof our algorithm. To visualize a little bit of the surrounding 
ow several streamlines areDepartment of Computer S
ien
e, University of Kaiserslautern, Germany



78 Closed Streamlines in 3D Ve
tor Fields

Figure 7.6: Closed streamline in a three dimensional ve
tor �eld.drawn. Obviously, every streamline is attra
ted by the 
losed streamline. After a shortwhile the streamline spirals around the 
losed streamline until it 
ompletely merges intoit. We 
an see in this example that the 
losed streamline in this three dimensional 
owa
ts like a sink.Figure 7.7 shows the same 
losed streamline with two streamsurfa
es. The stream-surfa
es are { just like the streamlines { attra
ted by the 
losed streamline. The stream-surfa
e gets smaller and smaller while it spirals around the 
losed streamline. After afew turns around the 
losed streamline it is only slightly wider then a streamline and�nally it totally merges with the 
losed streamline. We used a rather arbitrary 
olorDepartment of Computer S
ien
e, University of Kaiserslautern, Germany
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Figure 7.7: Limit 
y
le in a 3D ve
tor �eld with streamsurfa
es.s
heme for the surfa
e to enhan
e the three dimensional impression. Both �gures 7.6and 7.7 indi
ate the potential of this algorithm.
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