
3D Loop Detection and Visualization in Vector
Fields

Thomas Wischgoll1 and Gerik Scheuermann1

Computer Science Department, University of Kaiserslautern, Germany
{wischgol,scheuer}@informatik.uni-kl.de
Summary. Visualization has developed a tendency to use mathematical analysis
to obtain and present important data properties. In three-dimensional fluid flows,
engineers are interested in several important features. One type are recirculation
zones where the fluid stays for a long time. This plays a key role in combustion
problems since recirculation allows a completion of chemical reactions which usually
have a smaller time scale than fluid dynamics. Strong indicators for such recircu-
lation zones are looping streamlines in a steady vector field or in the time steps
of unsteady data. The article presents a method for the detection of such loops by
analyzing streamlines approaching them.

1 Introduction

Many problems in natural science and engineering involve vector fields. Fluid
flows, electric and magnetic fields are nearly everywhere, so measurements
and simulations of vector fields still increase dramatically. As with other data,
too, analysis is much slower and needs improvement. Mathematical methods
together with visualization can provide help in this situation. In most cases,
the scientist or engineer is interested in integral curves of the vector field like
streamlines in fluid flows or magnetic field lines. The qualitative nature of
these curves can be studied with topological methods developed originally
for dynamical systems. Especially in the area of fluid mechanics, topological
analysis and visualization have been used with success [3], [6], [11], [15].

This article concentrates on a specific topological class of integral curves,
namely loops, also called limit cycles. These integral curves are closed, so that
a particle traveling along the curve loops around forever. Their importance
stems from the fact that quite often neighboring integral curves either tend
toward the loop or come from there (i. e. tend toward the loop after reversing
the direction of time). This is a well-established result from dynamical sys-
tems theory [4], [8]. It may be noted that loops may also behave like saddles
in this three-dimensional case, but then they do not indicate recirculation
and therefore this case is less relevant in our context.

Several publications have dealt with related topics. Hepting et al. [7] study
invariant tori in four-dimensional dynamical systems by using suitable pro-
jections into three dimensions to enable detailed visual analysis of the tori.
Wegenkittel et al. [18] present visualization techniques for known features of
dynamical systems. Bürkle et al. [1] use a numerical algorithm developed by



2 Thomas Wischgoll and Gerik Scheuermann

some of the coauthors [2] to visualize the behavior of more complicated dy-
namical systems. In the numerical literature, we can find several algorithms
for the calculation of closed curves in dynamical systems [10], [17], but these
algorithms are tailored to deal with smooth dynamical systems where a closed
form solution is given.

Since visualization deals in many cases with piecewise linear, bilinear or
trilinear data, we present an algorithm tailored to this situation that can
be integrated into standard integral curve computation algorithms. While
computing an integral curve, we track the visited cells checking for repetition.
If we find a revisited cell, we check if the integral curve stays in the same cell
cycle forever. For this, we look at the boundary of the cell cycle in question
and check if the integral curve can cross the boundary. We have proposed a
similar algorithm for the two dimensional case earlier [19]. In contrast to this
two dimensional case where it is sufficient to find integral curves bounding
the region where the integral curve can go, we have to work with integral
surfaces in this article. We use a simplified version of Hultquist’s algorithm [9]
to construct these surfaces.

2 Mathematical Background

This section gives the necessary theoretical background and the terms for
our algorithm. We restrict our consideration in this article to steady, linearly
interpolated vector fields defined on a tetrahedral grid

v : R3 ⊃ D → R3, (x, y, z) 7→ v(x, y, z).

D is assumed to be bounded. This is the situation for many experimental or
simulated vector fields that have to be visualized. We are interested in the
behavior of integral curves

ca : R→ R3 , t 7→ ca(t)

with the properties

ca(0) = a

∂ca
∂t

(t) = v(ca(t)) .

For Lipschitz continuous vector fields, one can prove the existence and unique-
ness of integral curves ca through any point a ∈ D, see [8], [12]. The ac-
tual computation of integral curves is usually done by numerical algorithms
like Euler methods, Runge-Kutta-Fehlberg methods or Predictor/Corrector
methods [16].

The topological analysis of vector fields considers the asymptotic behavior
of integral curves. The α-limit set of an integral curve c is defined by {p ∈



3D Loop Detection and Visualization in Vector Fields 3

R3|∃(tn)∞n=0 ⊂ R, tn → −∞, limn→∞ c(tn) → p}. The ω-limit set of an inte-
gral curve c is defined by {p ∈ R3|∃(tn)∞n=0 ⊂ R, tn →∞, limn→∞ c(tn)→ p}.
If the α- or ω-limit set of an integral curve consists of only one point, this
point is a critical point or a point at the boundary ∂D. (It is usually assumed
that the integral curve stays at the boundary point forever.)

The most common case of a α- or ω-limit set in a vector field containing
more than one inner point of the domain is a loop or limit cycle [8]. This is
an integral curve ca, so that there is a t0 ∈ R with

ca(t+ nt0) = ca(t) ∀n ∈ N .

Fig. 1. A loop may attract integral curves in its neighborhood.

Figure 1 shows a typical example. Such a loop is called structurally stable
if, after small changes, the vector field still contains a loop.

3 Loop Detection

The principal to detect loops in a three dimensional vector field is similar to
the two dimensional case [19]. But there are some significant differences. To
avoid confusion we start with a short notation:

Notation 3.1 (Actually investigated streamline)
We use the term actually investigated streamline to describe the streamline
we check if it runs into a loop.

To reduce computational cost we first only integrate the streamline using
a Runge-Kutta-method of fourth order with an adaptive stepsize control.
Every cell that is crossed by the streamline is stored during the computation.
If a streamline approaches a loop it has to reenter the same cell again. This
results in a cell cycle:

Definition 3.2 (Cell cycle)
Let s be a streamline in a given vector field V . Further, let G be a set of cells
representing an arbitrary tetrahedral grid without any holes. Let C ⊂ G be a
finite sequence c0, . . . , cn of neighboring cells where each cell is crossed by the
streamline s in order and c0 = cn. If s crosses every cell in C in this order
again while continuing, C is called a cell cycle.



4 Thomas Wischgoll and Gerik Scheuermann

Fig. 2. Backward integrated surface.

This cell cycle identifies a region where we want to see if it can be left by
the streamline. To check this, we have to consider every backward integrated
streamline starting at an arbitrary point on a face of the boundary of the
cell cycle. Looking at the edges of a face we can see directly that it is not
sufficient to just integrate streamlines backward. Figure 2 shows an example.
We integrated backward a streamsurface starting at an edge of the cell cy-
cle. The streamlines starting at the vertices of that edge leave the cell cycle
earlier than the complete surface. So it may be possible that a part of the
streamsurface stays inside the cell cycle although the backward integrated
streamlines starting at the vertices leave it. Consequently, we have to find
another definition for exits than in the two dimensional case.

Definition 3.3 (Potential Exit Edges)
Let C be a cell cycle in a given tetrahedral grid G as in Definition 3.2. Then
we call every edge at the boundary of the cell cycle a potential exit edge.
Analogue to the two dimensional case we define a line on a boundary face
where the vector field is tangential to the face as a potential exit edge.

Due to the fact that we use linear interpolation inside the tetrahedrons
we can show that there will be at least a straight line on the face where the
vector field is tangential to the face or the whole face is tangential to the
vector field. An isolated point on the face where the vector field is tangential
to the face cannot occur.

When dealing with edges as exits we have to compute a streamsurface
instead of streamlines to consider every point on an exit edge. This leads us
to the following notation.



3D Loop Detection and Visualization in Vector Fields 5

Notation 3.4 (Backward integrated streamsurface)
We use the term backward integrated streamsurface to describe the stream-
surface we integrate by taking the negative vectors of the vector field starting
at a potential exit edge in order to validate this exit edge.

Analogue to the definition in the 2D case we define real exit edges.

Definition 3.5 (Real exit edge)
Let E be a potential exit edge of a given cell cycle C as in definition 3.3.
If the backward integrated streamsurface does not completely leave the cell
cycle after one full turn through C then this edge is called a real exit edge.

For the backward integrated streamsurface we use a simplified version
of the streamsurface algorithm introduced by Hultquist [9]. Since we do not
need a triangulation of the surface we only have to process the integration
step of that algorithm. Initially we start the backward integration at the
vertices of the edge. If the distance between these two backward integrations
is greater than a special error limit we start a new backward integration in
between. This continues with the two neighboring integration processes until
we created an approximation of the streamsurface that respects the given
error limit.

Fig. 3. Backward integration in one cell.

The integration stops if the whole streamsurface leaves the cell cycle or if
we completed one full turn through the cell cycle. But to construct the surface
properly we may have to continue a backward integration process across the
boundary of the cell cycle. This is due to the fact that some part of the
streamsurface is still inside the cell but the backward integrated streamline
already left it. Figure 3 shows a simplified example. Both streamlines - shown



6 Thomas Wischgoll and Gerik Scheuermann

as yellow lines - leave the cell, in fact they leave right after they started. But
the integration process must be continued until the whole surface created by
these two streamlines leaves the cell. This is marked by the red line at the
end of the streamsurface.

With these definitions and motivations we can formulate the main theo-
rem for our algorithm:

Theorem 3.6
Let C be a cell cycle as in definition 3.3 with no singularity inside and E the
set of potential exit edges. If there is no real exit edge among the potential
exit edges E or there are no potential exit edges at all then there exists a loop
inside the cell cycle.

Proof:
Let C be a cell cycle with no real exit edges. Every backward integrated
streamsurface leaves the cell cycle C completely. It is obvious that we cannot
leave the cell cycle if every backward integration starting at an arbitrary
point on a face of the boundary of the cell cycle C leaves the cell cycle. So
we have to prove that the actually integrated streamline cannot leave the cell
cycle C.

We look at each face of the boundary of the cell cycle C. Let Q be an
arbitrary point on a face F of the boundary of the cell cycle C. Let us assume
that the backward integrated streamline starting at Q converges to the ac-
tually investigated streamline. We have to show that this is a contradiction.
We have two different cases:

1.: The edges of face F are exit edges and there is no point on F where the
vector field is tangential to F .
From a topological point of view the streamsurfaces starting at all edges
of F build a tube that leaves the cell cycle. Since the backward integrated
streamline starting at Q converges to the actually investigated streamline
it does not leave the cell cycle. Consequently, it has to cross the tube
built by the streamsurfaces. But streamlines cannot cross each other and
therefore a streamline cannot cross a streamsurface.

2.: There is a potential exit edge e on the face F that is not a part of the
boundary of F .
Obviously, the potential exit edge e divides the face F into two parts. In
one part there is outflow out of the cell cycle C while at the other part
there is inflow into C. We do not need to consider the part with outflow
any further because every backward integrated streamline starting at a
point of that part immediately leaves the cell cycle C.
The backward integrated surface starting at the potential exit edge e and
parts of the backward integrated streamsurfaces starting at the boundary
edges of the face F build a tube again from a topological point of view.
Consequently, the backward integrated streamline starting at Q has to
leave the cell cycle C.



3D Loop Detection and Visualization in Vector Fields 7

We have shown that the backward integrated streamline starting at the
point Q has to leave the cell cycle also. Since there is no backward inte-
grated streamline converging to the actually investigated streamline at all
the streamline will never leave the cell cycle. o

Fig. 4. Loop including cell cycle and backward integrations.

With theorem 3.6 we are able to describe our algorithm in detail. It is
quite similar to the two dimensional case and mainly consists of three different
states:

Ê streamline integration: identifying one cell change after the other, check
at each cell if we reached a cell cycle.

Ë checking for exits: going backwards through the crossed cells and looking
for potential exit edges.

Ì validating exit: integrating backwards a curve from potential exit through
the whole cell cycle.

Figure 4 shows an example of our backward integration step. There, also
the loop is drawn in red and the cell cycle is shown in blue. Every backward
integrated streamsurface leaves the cell cycle. According to theorem 3.6, there
exists a loop inside this cell cycle. Then we can find the exact location by
continuing the integration process of the streamline that we actually investi-
gate until the difference between two successive turns is small enough. This
numerical criterion is sufficient in this case since we have shown that the
streamline will never leave the cell cycle.



8 Thomas Wischgoll and Gerik Scheuermann

4 Results

Fig. 5. Loop including some streamlines.

To test our implementation we created a synthetic dataset which includes
one loop. We first produced a two dimensional vector field which is symmet-
rical with respect to the y-axis. Additionally, all vectors residing at the y-axis
where zero. Then we rotated it around the y-axis and distorted it a little bit
to get a three dimensional flow. Figure 5 shows the result. The loop is colored
red. To visualize a little bit of the surrounding flow several streamlines are
drawn. Obviously, every streamline is attracted by the loop. After a short
time, while the streamline spirals around the loop, it completely merges into
it. We can see in this example that the loop in this three dimensional flow
acts like a sink.

Figure 6 shows the same loop with two streamsurfaces. The streamsurfaces
are – just like the streamlines – attracted by the loop. The streamsurface gets
smaller and smaller while it spirals around the loop. After a few turns around
the closed streamline it is only slightly wider than a streamline and finally



3D Loop Detection and Visualization in Vector Fields 9

Fig. 6. Loop in a 3D vector field with streamsurfaces

it totally merges with the loop. We used a rather arbitrary color scheme for
the surface to enhance the three dimensional impression.

5 Acknowledgments

This research was supported by the DFG project “Visualisierung nicht-
linearer Vektorfeldtopologie”. Further, we like to thank Tom Bobach, Hol-
ger Burbach, Stefan Clauss, Jan Frey, Christoph Garth, Martin Öhler, Max
Langbein, Aragorn Rockstroh, René Schätzl and Xavier Tricoche for their
programming efforts and Inga Scheler for helping with some of the figures.
The continuous support of all members of the computer graphics and visual-
ization team in Kaiserslautern gives us a productive working environment.

References

1. D. Bürkle, M. Dellnitz, O. Junge, M. Rumpf, and M. Spielberg. Visualizing
complicated dynamics. In A. Varshney, C. M. Wittenbrink, and H. Hagen,
editors, IEEE Visualization ’99 Late Breaking Hot Topics, pp. 33 – 36, San
Francisco, 1999.

2. M. Dellnitz and O. Junge. On the Approximation of Complicated Dynamical
Behavior. SIAM Journal on Numerical Analysis, 36(2), pp. 491 – 515, 1999.

3. A. Globus, C. Levit, and T. Lasinski. A Tool for Visualizing the Topology of
Three-Dimensional Vector Fields. In G. M. Nielson and L. Rosenblum, editors,
IEEE Visualization ‘91, pp. 33 – 40, San Diego, 1991.



10 Thomas Wischgoll and Gerik Scheuermann

4. J. Guckenheimer and P. Holmes. Dynamical Systems and Bifurcation of Vector
Fields. Springer, New York, 1983.

5. R. Haimes. Using residence time for the extraction of recirculation regions.
AIAA Paper 99-3291, 1999.

6. J. L. Helman and L. Hesselink. Visualizing Vector Field Topology in Fluid
Flows. IEEE Computer Graphics and Applications, 11(3), pp. 36–46, May 1991.

7. D. H. Hepting, G. Derks, D. Edoh, and R. R. D. Qualitative analysis of invariant
tori in a dynamical system. In G. M. Nielson and D. Silver, editors, IEEE
Visualization ’95, pp. 342 – 345, Atlanta, GA, 1995.

8. M. W. Hirsch and S. Smale. Differential Equations, Dynamical Systems and
Linear Algebra. Academic Press, New York, 1974.

9. J. P. M. Hultquist. Constructing stream surface in steady 3d vector fields.
In Proceedings IEEE Visualization 1992, pp. 171–177. IEEE Computer Society
Press, Los Alamitos CA, 1992.

10. M. Jean. Sur la méthode des sections pour la recherche de certaines solutions
presque périodiques de syst‘emes forces periodiquement. International Journal
on Non-Linear Mechanics, 15, pp. 367 – 376, 1980.

11. D. N. Kenwright. Automatic Detection of Open and Closed Separation and
Attachment Lines. In D. Ebert, H. Rushmeier, and H. Hagen, editors, IEEE
Visualization ’98, pp. 151–158, Research Triangle Park, NC, 1998.

12. S. Lang. Differential and Riemannian Manifolds. Springer, New York, third
edition, 1995.

13. K. Museth, A. Barr, and M. W. Lo. Semi-immersive space mission design
and visualization: Case study of the ”terrestrial planet finder” mission. In
Proceedings IEEE Visualization 2001, pp. 501–504. IEEE Computer Society
Press, Los Alamitos CA, 2001.

14. G. M. Nielson, H. Hagen, and H. Müller, editors. Scientific Visualization,
Overviews, Methodologies, and Techniques. IEEE Computer Society, Los Alami-
tos, CA, USA, 1997.

15. G. Scheuermann, B. Hamann, K. I. Joy, and W. Kollmann. Visualizing local
Vetor Field Topology. Journal of Electronic Imaging, 9(4), 2000.

16. J. Stoer and R. Bulirsch. Numerische Mathematik 2. Springer, Berlin, 3 edition,
1990.

17. M. van Veldhuizen. A New Algorithm for the Numerical Approximation of an
Invariant Curve. SIAM Journal on Scientific and Statistical Computing, 8(6),
pp. 951 – 962, 1987.

18. R. Wegenkittel, H. Löffelmann, and E. Gröller. Visualizing the Behavior of
Higher Dimensional Dynamical Systems. In R. Yagel and H. Hagen, editors,
IEEE Visualization ‘97, pp. 119 – 125, Phoenix, AZ, 1997.

19. T. Wischgoll and G. Scheuermann. Detection and Visualization of Closed
Streamlines in Planar Flows. IEEE Transactions on Visualization and Com-
puter Graphics, 7(2), 2001.

20. P. C. Wong, H. Foote, R. Leung, E. Jurrus, D. Adams, and J. Thomas. Vector
fields simplification – a case study of visualizing climate modeling and simu-
lation data sets. In Proceedings IEEE Visualization 2000, pp. 485–488. IEEE
Computer Society Press, Los Alamitos CA, 2000.


