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Purpose:	 To	 develop	 a	 method	 to	 reconstruct	 quantitative	 susceptibility
mapping	 (QSM)	 from	 multi-echo,	 multi-flip	 angle	 data	 collected	 using
strategically	acquired	gradient	echo	(STAGE)	imaging.

Methods:	 The	 proposed	 QSM	 reconstruction	 algorithm,	 referred	 to	 as
“structurally	 constrained	 Susceptibility	 Weighted	 Imaging	 and	 Mapping”
scSWIM,	 performs	 an	 ℓ1	 and	 ℓ2	 regularization-based	 reconstruction	 in	 a
single	step.	The	unique	contrast	of	the	T1	weighted	enhanced	(T1WE)	image
derived	 from	 STAGE	 imaging	 was	 used	 to	 extract	 reliable	 geometry
constraints	to	protect	the	basal	ganglia	from	over-smoothing.	The	multi-echo
multi-flip	 angle	 data	 were	 used	 for	 improving	 the	 contrast-to-noise	 ratio	 in
QSM	 through	 a	 weighted	 averaging	 scheme.	 The	 measured	 susceptibility
values	 from	scSWIM	for	both	simulated	and	 in	vivo	data	were	compared	 to
the:	 original	 susceptibility	 model	 (for	 simulated	 data	 only),	 the	 multi
orientation	 COSMOS	 (for	 in	 vivo	 data	 only),	 truncated	 k-space	 division
(TKD),	 iterative	 susceptibility	 weighted	 imaging	 and	mapping	 (iSWIM),	 and
morphology	enabled	dipole	inversion	(MEDI)	algorithms.	Goodness	of	fit	was
quantified	by	measuring	the	root	mean	squared	error	(RMSE)	and	structural
similarity	 index	 (SSIM).	 Additionally,	 scSWIM	was	 assessed	 in	 ten	 healthy
subjects.

Results:	The	unique	contrast	and	tissue	boundaries	from	T1WE	and	iSWIM
enable	the	accurate	definition	of	edges	of	high	susceptibility	regions.	For	the
simulated	brain	model	without	 the	addition	of	microbleeds	and	calcium,	 the
RMSE	was	best	at	5.21ppb	for	scSWIM	and	8.74ppb	for	MEDI	thanks	to	the
reduced	 streaking	 artifacts.	 However,	 by	 adding	 the	 microbleeds	 and
calcium,	 MEDI’s	 performance	 dropped	 to	 47.53ppb	 while	 scSWIM
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performance	remained	the	same.	The	SSIM	was	highest	for	scSWIM	(0.90)
and	then	MEDI	(0.80).	The	deviation	from	the	expected	susceptibility	in	deep
gray	matter	structures	for	simulated	data	relative	to	the	model	(and	for	the	in
vivo	 data	 relative	 to	 COSMOS)	 as	 measured	 by	 the	 slope	 was	 lowest	 for
scSWIM	 +	 1%(−1%);	 MEDI	 +	 2%(−11%)	 and	 then	 iSWIM	 −5%(−10%).
Finally,	scSWIM	measurements	in	the	basal	ganglia	of	healthy	subjects	were
in	agreement	with	literature.

Conclusion:	This	study	shows	that	using	a	data	 fidelity	 term	and	structural
constraints	 results	 in	 reduced	noise	and	streaking	artifacts	while	preserving
structural	 details.	 Furthermore,	 the	 use	 of	 STAGE	 imaging	 with	multi-echo
and	multi-flip	data	helps	to	improve	the	signal-to-noise	ratio	in	QSM	data	and
yields	less	artifacts.

Keywords:	 quantitative	 susceptibility	mapping	 (QSM),	 constrained	 image
reconstruction,	 gradient	 recalled	 echo	 (GRE)	phase	data,	 ill-posed	 inverse
problem,	strategically	acquired	gradient	echo	(STAGE)	imaging

INTRODUCTION
Magnetic	resonance	imaging	(MRI)	offers	many	different	contrast	mechanisms.
Today,	it	is	possible	to	obtain	magnetic	susceptibility	maps,	 ,	of	the	human
brain	(and	other	parts	of	the	body)	that	show	the	underlying	tissue	susceptibility
distribution.	Quantitative	 susceptibility	mapping	 (QSM)	 data	 are	 reconstructed
from	phase	 information,	which	 represents	 the	magnetic	 field	 variations	 caused
by	the	magnetization	of	an	object	 in	the	presence	of	an	external	magnetic	field
(Haacke	 et	 al.,	 2015).	 The	 resulting	 susceptibility	maps	 can	 be	 used	 to	 assess
bleeding	 (Bilgic	et	 al.,	2012),	 calcium	deposits	 (Deistung	et	 al.,	2013;	Chen	et
al.,	 2014)	 and	 oxygen	 saturation	 (Haacke	 et	 al.,	 2010).	 The	 knowledge	 of	 the
susceptibility	source	and	the	quantity	of	either	iron	or	calcium	can	help	improve
the	 diagnosis	 of	 neurodegenerative	 diseases	 such	 as	 multiple	 sclerosis,
Parkinson’s	disease,	stroke,	Sturge-Weber	syndrome	and	traumatic	brain	 injury
(Haacke	et	al.,	2015)	to	name	a	few.

Extracting	 the	 susceptibility,	 χ,	 from	Gradient	Recalled	Echo	 (GRE)	 phase
data	is	an	ill-posed	problem	because	the	dipole	kernel	has	zeroes	along	a	conical
surface	 and,	 therefore,	 under-samples	 k-space	 (Haacke	 et	 al.,	 2015).	 Many
studies	 have	 attempted	 to	 solve	 this	 problem.	 A	 fast	 and	 direct	 method	 to
reconstruct	χ	is	the	Thresholded	K-space	Division	(TKD)	approach	(Wharton	et
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al.,	2010)	that	uses	a	threshold	to	ignore	the	smaller	values	near	the	zeroes	in	the
inversion	 process.	However,	 the	 TKD	 reconstructed	 susceptibility	map	 suffers
from	streaking	artifacts	 and	underestimates	χ.	An	alternative	approach	 referred
to	as	iterative	Susceptibility	Weighted	Imaging	and	mapping	(iSWIM)	has	been
used	to	fill	 in	the	missing	parts	of	k-space	to	overcome	these	artifacts	(Tang	et
al.,	 2013).	 This	was	 accomplished	 by	 constraining	 the	 susceptibility	 values	 in
regions	 with	 high	 susceptibility.	 However,	 the	 final	 images	 are	 still	 noisy	 in
regions	 of	 uniform	 susceptibility.	 A	 better	 approach,	 in	 theory,	 but	 one	 that
requires	 multiple	 scans,	 is	 the	 Calculation	 Of	 Susceptibility	 through	Multiple
Orientation	 Sampling	 (COSMOS)	 (Liu	 et	 al.,	 2009).	 This	 method	 utilizes	 the
phase	 images	 from	multiple	 orientations	 to	 stabilize	 the	 inversion	 process	 and
remove	the	singularities	by	weighted	linear	least	squares.	This	method	is	usually
used	as	a	gold	standard	in	the	evaluation	of	any	QSM	reconstruction	method.

A	number	of	other	approaches	use	regularization	techniques	with	different	a
priori	information	to	reconstruct	the	susceptibility.	Although,	these	methods	are
computationally	more	expensive	than	TKD	approaches,	the	reconstruction	times
are	 still	 reasonable,	 and	 they	 are	 designed	 to	 smooth	 over	 regions	 that	 have
homogeneous	 susceptibilities.	 For	 example,	 morphology	 enabled	 dipole
inversion	 (MEDI)	 exploits	 the	 structural	 consistency	 between	 χ	 and	 the
magnitude	 image	 in	 the	 form	 of	 an	 ℓ1-norm	 (Liu	 et	 al.,	 2012).	However,	 this
constraint	 can	 cause	 errors	 in	 regions	where	 there	 are	 inconsistencies	 between
the	 magnitude	 images	 and	 the	 susceptibility	 maps.	 Homogeneity	 Enabled
Incremental	Dipole	Inversion	(HEIDI)	(Schweser	et	al.,	2012)	is	another	method
that	 uses	 structural	 information	 from	 both	 magnitude	 and	 phase	 images	 to
correct	this	issue.	An	alternative	approach,	structural	feature	based	collaborative
reconstruction	(SFCR)	(Bao	et	al.,	2016),	argues	that	the	edge	information	from
either	magnitude	or	phase	images	does	not	reflect	all	the	structural	features	in	χ
and	the	reconstructed	image	suffers	from	over-smoothed	edges.	The	key	steps	in
this	approach	are	to	include	a	structural	feature-based	ℓ1-norm	constraint	and	a
voxel	 fidelity-based	 ℓ2-norm	 constraint.	 This	 allows	 both	 edges	 and	 small
objects	 to	 be	 recovered	 while	 still	 minimizing	 artifacts.	 Furthermore,	 most	 of
these	methods	 find	 the	 total	 field	 through	 a	 linear	 fitting	 of	multi-echo	 phase
data.	However,	the	inclusion	of	long	echo	times	can	lead	to	blooming	artifact,	an
increase	 in	 signal	 loss	 at	 the	 edges	 of	 the	 object	 and,	 potentially,	 an
underestimation	of	χ.

Strategically	 acquired	 gradient	 echo	 imaging	 (STAGE)	 is	 a	 rapid	 multi-
contrast	 multi-parametric	 imaging	 approach	 that	 employs	 two	 fully	 flow
compensated	 double-echo	 GRE	 scans	 using	 low	 and	 high	 flip	 angles	 (FAs)
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relative	 to	 the	 Ernst	 angle	 of	 white	 matter.	 It	 provides	 not	 only	 a	 variety	 of
qualitative	 images	 such	 as	 the	 T1weighted	 enhanced	 (T1WE)	 image,	 but	 also
provides	 multiple	 quantitative	 information	 such	 as	 ,	 T1,	 and	 susceptibility
maps	(Chen	et	al.,	2018b;	Wang	et	al.,	2018;	Haacke	et	al.,	2020).	The	T1WE
image	is	generated	from	the	combination	of	two	GRE	scans	with	low	and	high
FAs	(Chen	et	al.,	2018b)	where	the	radiofrequency	(RF)	transmit	field	variation
is	 corrected	 (Wang	 et	 al.,	 2018).	When	 compared	 with	 conventional	 T1W	 or
T2∗W	images,	the	T1WE	images	derived	from	STAGE	have	improved	contrast
between	 cortical	 gray	matter	 and	white	matter,	 and	 between	 deep	 gray	matter
and	 white	 matter	 (Chen	 et	 al.,	 2018b).	 The	 improved	 contrast	 in	 the	 T1WE
image	benefits	structural	segmentation.	STAGE	has	also	become	more	broadly
tested	 for	 a	 number	 of	 neurodegenerative	 diseases	 (Haacke	 et	 al.,	 2020).
Therefore,	 in	 this	 study,	 we	 propose	 a	 “structurally	 constrained	 Susceptibility
Weighted	 Imaging	 and	 Mapping”	 (scSWIM)	 method	 that	 reconstructs	 the
susceptibility	 using	multiple	 echo,	multiple	 flip	 angle	STAGE	data.	 Similar	 to
SFCR,	scSWIM	utilizes	the	structural	information	from	both	magnitude	data	and
the	susceptibility	maps	but	 in	a	single	step.	The	scSWIM	approach	specifically
uses	 the	 enhanced	 contrast	 available	 in	 STAGE	 imaging	 to	 define	 prior
information	about	 the	edges	of	 the	white	matter	and	gray	matter.	 In	 this	paper,
we	introduce	scSWIM,	evaluate	it	on	simulated	data	and	test	it	on	in	vivo	brain
data.

MATERIALS	AND	METHODS

Calculating	the	Susceptibility	From	an	L1	and	L2	Norm	Cost
Function
Based	 on	Maxwell’s	 equations,	 the	 relationship	 between	 the	 phase	 image	φ(r)
(obtained	 from	 a	 3D	 GRE	 imaging	 approach)	 and	 susceptibility	 χ(r)	 in	 ppm
(parts	per	million)	can	be	written	as	(Haacke	and	Reichenbach,	2011):

where	 r,	Bo	 and	TE	 are	 the	 voxel	 position	 vector	 in	 image	 domain,	 the	main
magnetic	 field	 strength	 (in	 T)	 and	 the	 echo	 time,	 respectively;	 γ	 =
2.675×108rad/s/T	 is	 the	 gyromagnetic	 ratio;	F	 and	F−1	 denote	 the	 Fourier	 and
inverse	 Fourier	 transform	 operators,	 respectively;	 and	 D(k)	 is	 the	 Fourier
transform	of	the	unit	dipole	kernel	at	the	position	k	=	[kx,	ky,	kz]	in	k-space	and
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is	defined	as:

The	objective	function	of	scSWIM	is	similar	to	the	S-step	of	SFCR	(Bao	et
al.,	2016)	with	changes	in	constraint	definitions	and	is	given	as:

and	the	final	solution	for	the	susceptibility	is	given	by:

where	δB(r)	=	φ(r)/(γB0TE)	and	W	in	the	data	fidelity	term	is	a	weighting	matrix
proportional	to	the	image	magnitude	that	defines	the	reliability	of	the	magnetic
field	shift	for	each	voxel	and	G	denotes	the	gradient	operator.

In	the	S-step	of	the	SFCR	method,	the	edge	matrix,	P,	is	a	binary	mask	that
is	derived	from	the	initial	susceptibility,	 	(where	for	convenience	we	have	now
dropped	 the	dependence	on	r).	This	 initial	 	 (which	 is	 reconstructed	from	the
first	regularized	minimization	step	of	the	SFCR,	called	the	M-step)	is	based	on
an	objective	function	that	is	similar	to	Eq.	[3]	but	its	constraints	are	based	on	the
magnitude	image.	Also,	R	 in	the	S-step	of	 the	SFCR	method	is	a	fidelity	mask
where	 voxels	 with	 high	 signal-to-noise	 ratio	 (SNR)	 are	 mapped	 to	 zero,	 low
SNR	to	one	and	voxels	corresponding	to	susceptibility	artifact	to	two.	However,
the	choice	of	R,	P	and	the	starting	input	are	different	for	scSWIM	as	described
below.

In	scSWIM,	we	 replaced	 the	SFCR	first	 regularized	minimization	 (M-step)
with	 iSWIM	 (Tang	 et	 al.,	 2013)	 since	 it	 has	 no	 smoothing,	 provides	 an	 initial
susceptibility	 map	 with	 sharp	 vessels	 and	 the	 reconstruction	 times	 are	 short.
Then,	in	the	l1	regularization	term	of	Eq.	[3],	we	used	the	edge	matrix,	P,	which
is	the	binary	mask	that	is	derived	from	the	product	of	the	thresholded	gradients
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of	the	T1WE	image,	PT1WE,	and	the	initial	susceptibility	map, :

where	 Gi	 denotes	 the	 gradient	 operator,	 i	 is	 an	 indicator	 to	 the	 x,	 y	 or	 z
directions,	and	ρ	denotes	the	T1WE	image.	Both	μ1	and	μ2	are	threshold	values
chosen	 to	 be	 2.5	 times	 the	 noise	 level	 of	 the	 derivatives	 of	 ρ	 and	 ,
respectively,	 in	order	 to	maintain	the	edges	of	 the	gray/white	matter,	veins	and
other	structures	in	the	brain.	Essentially,	PT1WE	excludes	the	edges	of	the	white
matter	 and	 gray	 matter	 and	 	 excludes	 the	 edges	 of	 the	 vessels	 and	 basal
ganglia	including	the	globus	pallidus	(GP),	caudate	nucleus	(CN),	putamen	(PT),
thalamus	(THA),	substantia	nigra	(SN),	and	red	nucleus	(RN)	and	P	=	PT1WE	×	

.
In	 the	 l2	 regularization	 term,	we	have	used	a	 structural	matrix	R	 to	protect

voxels	 in	 the	 regions	 of	 high	 susceptibility,	 such	 as	 veins	 and	 basal	 ganglia
structures,	 from	being	 over-smoothed	while	 still	 smoothing	 other	 regions.	The
matrix	R	 is	generated	from	the	normalized	T1WE	image	excluding	 the	 regions
detected	 in	 the	 RDGM	 (where	 DGM	 stands	 for	 “deep	 gray	 matter”)	 and	
masks	 defined	 next.	 The	 RDGM	 mask	 is	 calculated	 using	 an	 atlas-based
segmentation	 method	 developed	 in-house	 (Wang	 et	 al.,	 2019).	 This	 method
segments	 the	 deep	 gray	 matter	 structures	 from	 the	 high	 flip	 angle	 magnitude
image	(T1W),	initial	susceptibility	map	 	and	STAGE	T1	weighted	data	and	T1
maps.	The	 	mask	is	generated	from	the	method	used	in	Tang	et	al.	(2013)	by
applying	a	threshold	to	the	homodyne	filtered	 	map.	Finally,	the	constants	λ1
and	λ2	are	found	using	the	L-curve	approach	(Hansen	and	O’Leary,	1992).

The	 single-echo	 scSWIM	 approach	 just	 described	 was	 then	 adopted	 to
handle	 the	 multiple	 echo,	 multiple	 flip	 angle	 STAGE	 data.	 For	 this	 purpose,
iSWIM	was	used	as	 the	 initial	 input	 into	scSWIM	for	 the	 low	flip	angle,	short
echo	data	(FALTE1).	Then	for	the	other	three	echoes	(FAHTE1,	FALTE2,	and
FAHTE2),	 the	 reconstructed	 scSWIM	 from	 the	previous	 echo	was	used	 as	 the
initial	guess	 for	processing	 the	scSWIM	of	 the	next	echo.	Finally,	an	averaged
scSWIM	was	generated	by	an	 -based	weighted	average	of	the	individual	echo
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scSWIMs	(χi):

where	 	 and	 	 is	 from	 the	 STAGE	 data	 and	 is	 created	 from
averaging	 the	 	maps	from	each	of	 the	 flip	angle	 images	(Chen	et	al.,	2018b;
Wang	et	al.,	2018):

where	ρ1	and	ρ2	are	the	magnitudes	of	the	first	(TE1)	and	second	(TE2)	echoes,
respectively.

This	 multi-echo	 approach	 has	 three	 advantages:	 first,	 each	 echo	 can	 be
reviewed;	second,	the	weighted	scSWIM	will	have	a	better	SNR;	and	third,	loss
of	 tissues	associated	with	 the	use	of	a	phase	quality	control	map	 (especially	at
longer	echoes)	will	be,	to	a	large	degree,	replaced	with	the	shorter	echo	scSWIM
value.	This	weighting	 automatically	 ensures	 that	wherever	 there	 is	 a	measured
susceptibility	 from	 one	 echo	 it	 will	 contribute	 to	 the	 final	 QSM	 result	 (while
echoes	 with	 zeroes	 will	 not	 make	 a	 contribution).	 Figure	 1	 shows	 the	 block
diagram	of	 the	proposed	multi-echo,	multi-flip	angle	scSWIM	processing	steps
for	STAGE.

FIGURE	1.	Block	diagram	of	multi-echo,	multi-flip	angle	scSWIM	for	STAGE	imaging.	Here,	φ,	

denote	the	phase	and	initial	estimate	of	the	susceptibility	map	from	the	multi-echo	R2∗	weighted	iSWIM,
respectively.	FAL	and	FAH	denote	the	double-echo	low	and	high	flip	angles	scans	of	STAGE	imaging,
respectively.
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Simulated	Data
The	3D	isotropic	susceptibility	model	developed	in	this	laboratory	(Buch	et	al.,
2012)	was	used	to	test	the	algorithm.	This	model	includes	the	general	structures
of	the	human	brain	such	as	gray	matter	(GM),	white	matter	(WM),	basal	ganglia
and	midbrain	 structures	 [PT,	GP,	CN,	 THA,	RN,	 SN,	 and	 crus	 cerebri	 (CC)],
cerebrospinal	fluid	(CSF)	and	the	major	veins.	The	susceptibility	values	for	these
structures	are	summarized	in	the	first	row	of	Table	1.

TABLE	1.	Susceptibility,	T1	relaxation	time,	and	relative	proton	density	(ρ0)	values	for	different
structures	in	the	simulated	brain	model.

To	 test	 the	 performance	 of	 the	 reconstruction	 in	 the	 presence	 of	 cerebral
microbleeds	 (CMB)	 or	 calcium	 deposits	 (CaD),	 two	 spherical	 objects	 with
susceptibility	 values	 (radius)	 of	 1000	 ppb	 (5	 mm)	 and	 3000	 ppb	 (3	 mm),
respectively,	were	 added	 to	 the	 frontal	white	matter	 and	 two	 spherical	 objects
with	 susceptibility	 values	 of	 −1000	 ppb	 (5	mm)	 and	−3000	 ppb	 (3	mm)	were
added	 to	 the	 posterior	 white	matter.	 Additionally,	 one	 spherical	 object	 with	 a
radius	of	3	mm	with	a	 susceptibility	of	−3000	ppb	was	added	 to	 the	model	 to
mimic	 the	 pineal	 gland	 (PG).	 The	 values	 for	 CMBs	 were	 taken	 from	 our
experience	in	the	field	of	traumatic	brain	injury	and	stroke	where	we	usually	see
CMBs	with	susceptibilities	as	 large	as	1000	ppb	but	on	occasion	higher	values
up	 to	 2000	 ppb	 and	 3000	 ppb	 have	 been	 seen	 so	we	 used	 both	 1000	 ppb	 and
3000	ppb	 to	 test	 the	metal	 of	 the	method.	For	 the	CaD,	 the	values	 are	 around
−3000	ppb	but	 can	 range	 lower	 and	 slightly	higher	 than	 this	 as	 the	 calcium	 is
highly	diamagnetic	(Buch	et	al.,	2015).

This	 final	 susceptibility	model,	 χideal,	was	used	 to	generate	 the	magnitude
and	 phase	 images	 using	 the	 STAGE	 imaging	 parameters:	 FA	=	 6o/24o,	 TE1	=
7.5/8.75ms,	 TE2	 =	 17.5/18.75ms,	 and	 TR	 =	 25ms.	 The	 phase	 images	 were
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simulated	from	the	forward	model	in	Equations	[1]	and	[2]	at	B0	=	3T.	To	create
the	 magnitude	 images,	 first	 an	 R2∗	 map	 was	 generated	 from	 χideal	 using	 the
relationship	R2∗	=	20/s	+	0.125χ	(Ghassaban	et	al.,	2019b)	assuming	R2∗	=	40/s
for	CMB,	PG,	and	CaD	objects.	Then,	the	magnitude	image	was	calculated	using
the	Ernst	 equation	 (Brown	 et	 al.,	 2014).	The	 proton	 density	 and	T1	 relaxation
times	 for	 different	 brain	 structures	 are	 summarized	 in	 Table	 1	 while	 they	 are
assumed	to	be	zero	for	CMB,	PG,	and	CaD	objects.	These	values	were	adopted
from	the	literature	(Lee	et	al.,	2006;	Brown	et	al.,	2014)	or	manually	measured
from	the	in	vivo	STAGE	PD-map	and	T1-map.

Finally,	Gaussian	noise	was	added	to	the	complex	signal	to	produce	an	SNR
of	 10:1.	 The	 reconstructed	 susceptibility	map	 using	 the	 proposed	method	was
compared	with	 the	TKD,	 iSWIM,	 and	MEDI	methods.	The	 original	 simulated
susceptibility	 model	 (χideal)	 was	 used	 as	 the	 gold	 standard	 to	 measure	 the
performance	of	each	method	using	RMSE	and	SSIM	as	measures	of	goodness	of
fit	 (Wang	 et	 al.,	 2004)	 where	 SSIM	 =	 1	 corresponds	 to	 the	 perfect	 structural
similarity	while	SSIM	=	0	indicates	no	similarity	between	the	two	images.

In	vivo	Data
The	proposed	scSWIM	method	was	tested	on	two	sets	of	in	vivo	datasets	that	are
discussed	below.	All	subjects	involved	in	this	study	signed	a	consent	form	to	be
part	of	this	IRB	approved	research.

Single	Test	Case	Including	COSMOS
The	 in	vivo	MRI	data	for	 this	single	 test	case	was	acquired	from	a	29-year	old
male	 volunteer	 on	 a	 3T	 Siemens	 scanner	 (Siemens	 Healthcare,	 Erlangen,
Germany)	at	Wayne	State	University.	The	imaging	parameters	were:	6°	and	24°
for	the	low	and	high	flip	angle	scans	with	TR	=	25	ms,	TE1	=	6.5/7.5	ms,	TE2	=
17.5/18.5	 ms,	 bandwidth:	 277	 Hz/pixel,	 and	 GRAPPA	 =	 2.	 The	 matrix	 size,
voxel	resolution,	and	FOV	were	384	×	288	×	104,	0.67	×	0.67	×	1.33	mm3,	and
256	×	192	×	139mm3,	 respectively.	The	 total	 scan	 time	 for	 the	high-resolution
STAGE	 is	 about	 10	 min.	 For	 the	 purpose	 of	 generating	 COSMOS,	 two
additional	orientations	with	the	same	imaging	parameters	were	collected	for	this
subject.	 The	 reconstructed	 susceptibility	 map	 using	 the	 proposed	 scSWIM
method	was	 compared	with	 those	 from	 the	TKD,	 iSWIM	and	MEDI	methods
and	compared	to	COSMOS	as	the	reference	image.

Evaluation	on	a	Set	of	Healthy	Human	Subjects
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Additionally,	 we	 tested	 scSWIM	 for	 ten	 healthy	 subjects	 acquired	 using	 a
Siemens	 3T	 Prisma	 scanner	 with	 lower	 resolution	 compared	 to	 the	 above-
mentioned	 in	vivo	case.	The	 imaging	parameters	were	 the	same	for	 the	sample
used	 above	 in	 the	 simulated	 data	 except	 the	matrix	 size,	 voxel	 resolution,	 and
FOV	were	384	×	144	×	64,	0.67	×	1.33	×	2	mm3	(interpolated	to	0.67	×	0.67	×	2
mm3)	 and	 256	 ×	 192	 ×	 128	 mm3,	 respectively,	 TE1	 =	 7.5/8.5	 ms,	 and	 a
bandwidth	of	240	Hz/pixel.	The	total	scan	time	for	this	resolution	is	about	5	min.

Data	Pre-processing
The	entire	processing	pipeline	was	implemented	in	MATLAB	(The	Mathworks,
Inc.,	Natick,	MA,	United	States)	on	a	workstation	with	Windows	10,	Intel	CPU
i7-3770	with	 4	 cores	 and	 16GB	RAM.	The	 phase	 image	was	 first	 unwrapped
using	 the	 bootstrapping	 (Chen	 et	 al.,	 2018a)	 and	 quality	 guided	 3D	 phase
unwrapping	(Abdul-Rahman	et	al.,	2007)	methods	 in	 the	simulated	and	 in	vivo
data,	respectively.

For	 the	 in	 vivo	 data,	 the	 induced	 background	 field	 from	 the	 air/tissue
interfaces	 was	 removed	 from	 the	 unwrapped	 phase	 using	 the	 Sophisticated
Harmonic	Artifact	Reduction	 for	 Phase	 data	 (SHARP)	 algorithm	 (Schweser	 et
al.,	2011)	with	a	kernel	size	of	6	pixels.	Next,	the	brain	mask	for	the	in	vivo	data
was	 extracted	 from	 the	magnitude	 images	 using	 BET	 (Brain	 Extraction	 Tool)
(Smith,	2002).	Finally,	the	resulting	phase	was	zero-padded	symmetrically	in	the
spatial	 domain	 to	 a	matrix	 size	 of	 256	 ×	 256	 ×	 256	 or	 512	 ×	 512	 ×	 512	 for
simulated	and	in	vivo	datasets,	respectively.

Susceptibility	Map	Reconstruction
In	Eq.	[3],	the	parameters	λ1	and	λ2	were	determined	by	plotting	the	measured
residual	errors	of	 the	data	 fidelity	and	 the	 two	 regularization	 terms	 for	each	of
the	 individual	 STAGE	 scans	 using	 the	L-curve	method	 (Hansen	 and	O’Leary,
1992).	In	theory,	λ1	controls	the	spatial	smoothness	and	λ2	helps	to	preserve	the
high	 susceptibility	 regions	 and	 small	 objects	 such	 as	 vessels	 from	being	 over-
smoothed.	As	mentioned	in	section	“Calculating	the	Susceptibility	From	an	L1
and	L2	Norm	Cost	Function,”	an	atlas-based	segmentation	method	developed	in-
house	(Wang	et	al.,	2019)	was	used	to	generate	the	RDGM	mask.	This	method
provided	 the	 labeled	mask	 segmenting	 the	 right	 and	 left	 subcortical	 deep	 gray
matter	structures	from	the	T1W,	STAGE	T1WE,	T1	map,	and	 .	This	labeled
mask	was	carefully	reviewed	and	if	needed	fine-tuned	manually	(this	was	done
on	 3	 cases	 for	 the	GP	 and	 SN	 structures	which	 sometimes	were	 smaller	 than
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what	would	have	been	drawn	manually).	If	these	regions	had	not	been	corrected,
the	algorithm	would	have	 smoothed	 that	part	of	 the	GP	not	protected.	Finally,
the	RDGM	mask	is	generated	from	binarizing	the	labeled	mask.

Several	algorithms	were	chosen	 to	compare	with	scSWIM,	 including	TKD,
iSWIM,	and	MEDI.	In	generating	the	MEDI	results,	a	regularization	parameter
of	250	(350)	was	used	for	 the	simulated	(in	vivo)	data.	For	TKD	processing,	a
threshold	of	0.1	was	used	and	 iSWIM	was	performed	with	4	 iterations.	All	 of
these	 parameters	 were	 adjusted	 to	 give	 the	 lowest	 RMSE.	 Additionally,
COSMOS	was	used	as	 the	gold	standard	for	 the	 in	vivo	data.	Multi	orientation
images	 for	 the	 COSMOS	 data	 were	 co-registered	 using	 ANTs	 (Avants	 et	 al.,
2009,	 2012).	 In	 the	 TKD,	 iSWIM,	 and	 scSWIM	 methods,	 the	 final	 multiple
echo,	multiple	flip	angle	QSM	data	were	generated	using	a	multi-echo	R2∗-based
weighted	averaging	of	the	individual	QSM	images	from	each	echo	and	each	flip
angle	 data.	 In	 MEDI,	 the	 final	 QSM	 was	 generated	 by	 averaging	 the
reconstructed	QSM	images	from	the	fitted	phases	in	each	of	the	multi-echo	low
and	high	flip	angle	scans.

Quantitative	Analysis	for	Susceptibility	Map
For	 the	 quantitative	 analysis	 of	 the	 data,	 the	 susceptibility	mean	 and	 standard
deviation	were	 found	 from	 the	entire	3D	structure	of	 interest.	 In	 the	 simulated
model,	all	the	structures	of	interest	were	measured	automatically	(since	we	know
the	 location	 of	 each	 structure).	 For	 the	 in	 vivo	 data,	 the	 susceptibility	 of	 the
midbrain	 structures	 were	 also	 automatically	 measured	 since	 they	 have	 been
determined	in	creating	 the	RDGM	masks	for	 the	boundaries	of	 these	structures
as	described	earlier.	On	the	other	hand,	the	susceptibility	of	the	CSF,	WM,	and
major	veins	[SSV	and	internal	cerebral	vein	(ICV)]	were	measured	manually	by
tracing	the	ROIs	on	the	QSM	data	using	SPIN	(SpinTech,	Inc.,	Bingham	Farms,
MI.	United	States).	The	manual	tracing	was	performed	in	the	axial	view	for	CSF
and	WM,	 but	 veins	were	 traced	 in	 the	 sagittal	 view	 for	 easier	 localization.	A
linear	regression	model	was	used	to	compare	the	measured	susceptibility	values
from	each	 reconstruction	method	with	 those	 from	 the	 susceptibility	model	 and
COSMOS	to	assess	the	accuracy	of	midbrain	structures	in	the	simulated	and	in
vivo	data,	respectively.

RESULTS

Simulated	Data
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By	comparing	 the	P	 and	R	masks	 for	 the	 simulated	data	 (discussed	 in	Section
“Simulated	Data”)	and	also	the	first	and	second	regularization	terms,	and	for	the
purpose	of	bringing	the	two	terms	to	the	same	order,	we	set	λ1	=	0.005λ2.	This	is
further	 reviewed	 in	 the	 Discussion	 section.	 Based	 on	 this	 assumption	 and
simulations	in	the	human	brain	model,	λ2	=	{6.81,1.47,3.16,1.00}×10−3	provided
the	best	results	in	terms	of	residual	errors	for	the	four	different	scans	(FALTE1,
FAHTE1,	 FALTE2,	 and	 FAHTE2),	 respectively	 (see	 Figures	 2A–C	 for
FAHTE1).	A	comparison	of	scSWIM	with	TKD,	iSWIM,	and	MEDI	along	with
their	 absolute	 errors	 and	 structural	 similarity	 maps	 relative	 to	 the	 simulation
model	 are	 shown	 in	 Figure	 3.	 In	 the	 simulated	 data	 (Figures	 3A–C),	we	 have
used	the	exact	known	edge	and	structural	matrices	from	χideal	 to	create	Pideal
(Figure	 3D)	 and	 Rideal	 (Figure	 3E).	 The	 TKD	 results	 (Figures	 3F–J)	 show
severe	 streaking	 artifacts	 while	 the	 iSWIM	 results	 have	 much	 less	 streaking
(Figures	3K–O).	MEDI	does	an	excellent	 job	 (Figures	3P–T)	as	does	scSWIM
(Figures	3U–Y)	 in	 reproducing	 the	model	with	minimal	 artifacts	 and	noise.	 In
both	 these	 last	 two	 reconstructions,	 the	 streaking	 artifact	 is	 highly	 reduced
compared	to	both	TKD	and	iSWIM	and	the	images	look	much	better	in	terms	of
SNR.	However,	MEDI	 does	 not	 resolve	 the	 streaking	 artifact	 from	 the	 CMB,
pineal	gland,	or	calcified	objects	with	higher	susceptibility	values.
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FIGURE	2.	Determination	of	the	scSWIM	regularization	parameter	λ2	in	the	simulated	(A–C)	and	in	vivo
(D–F)	data	for	the	higher	flip	angle,	short	echo	(FAHTE1)	scan	using	L-curve	method.	The	curves	in	the
first	column	show	the	log-log	L-curve.	The	curvature	and	RMSE/residual	error	plot	vs	λ2	values	are
displayed	in	the	third	column.	The	optimal	values	(shown	by	the	red	circle)	for	the	scSWIM	at	FAHTE1
scan	were	determined	to	be	λ2	=	1.47×10−3	andλ2	=	1.47×10−4	for	the	simulated	and	in	vivo	data,
respectively,	where	λ1	was	set	equal	to	0.005λ2.	This	process	is	repeated	for	the	other	scans	(FALTE1,
FALTE2,	and	FAHTE2)	and	the	optimal	parameters	were	selected.

72


































