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Summary. Vector fields occur in many application domains in science and engi-
neering. In combustion processes, for instance, vector fields describe the flow of gases.
This process can be enhanced using vector field visualization techniques. Also, wind
tunnel experiments can be analyzed. An example is the design of an air wing. The
wing can be optimized to create a smoother flow around it. Vector field visualiza-
tion methods help the engineer to detect critical features of the flow. Consequently,
feature detection methods gained great importance during the last years.

Methods based on topological features are often used to visualize vector fields
because they clearly depict the structure of the vector field. Most algorithms basi-
cally focus on singularities as topological features. But singularities are not the only
features that typically occur in vector fields. To integrate other features as well,
this paper defines a topological feature for vector fields based upon the asymptotic
behavior of the flow. This article discusses techniques that are able to detect this
feature.

Key words: Topological analysis, Vector field visualization, Flow visualiza-
tion, Closed streamlines, Feature detection.

1 Introduction

Many of the problems in natural science and engineering involve vector fields.
Fluid flows, electric and magnetic fields are nearly everywhere, therefore mea-
surements and simulations of vector fields are increasing dramatically. As with
other data, analysis is much slower and still needs improvement. Mathematical
methods together with visualization can provide help in this situation. In most
cases, the scientist or engineer is interested in integral curves of the vector field
such as streamlines in fluid flows or magnetic field lines. The qualitative nature
of these curves can be studied with topological methods developed originally
for dynamical systems. Especially in the area of fluid mechanics, topological
analysis and visualization have been used successfully [9, 13, 18, 25].

But often, topological methods cover only a few topological features that
can occur in vector fields. Basically, only the singularities of a flow are con-
sidered in most algorithms. For instance, a sink is not the only topological
feature that is able to attract the surrounding flow. This becomes quite ev-
ident when thinking about bifurcation. Consider the Hopf bifurcation as an
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example. There, a closed streamline may arise from a sink. This closed stream-
line then has the same properties as the sink it originated from: it attracts the
flow in exactly the same way. Based on this motivation, this paper defines a
general topological feature that covers singularities such as sources and sinks
but also other features depending on their attracting or repelling property.

First, an introduction of existing vector field visualization methods is given
including topological techniques. Then, topological features are discussed and
a clear definition of a topological feature based on asymptotic behavior of the
flow is given. Subsequently, algorithms are described that are able to detect
this kind of feature. Finally, results are shown and future work is discussed.

2 Related Works

Several visualization methods for vector fields are available at present. Here,
the focus is on describing those methods that are useful in this application
area. An overview over the various visualization methods can also be found
in other publications [10] and PhD theses [19, 26].

Topological methods depict the structure of the flow by connecting sources,
sinks, and saddle singularities with separatrices. Critical points were first in-
vestigated by Perry [22], Dallmann [5], Chong [4] and others. The method it-
self was first introduced in visualization for two-dimensional flows by Helman
and Hesselink [12]. Several extensions to this method exist. Scheuermann et
al [25] extended this method to work on a bounded region. To get the whole
topological skeleton of the vector field, points on the boundary have to be
taken into account also. These points are called boundary saddles. To create
a time dependent topology for two-dimensional vector fields, Helman and Hes-
selink [13] use the third coordinate to represent time. This results in surfaces
representing the evolution of the separatrices. A similar method is proposed by
Tricoche et al. [27, 28] but this work focuses on tracking singularities through
time. Although closed streamlines can act in the same way as sources or sinks,
they are ignored in the considerations of Helman and Hesselink and others.

To extend this method to three-dimensional vector fields, Globus et al. [9]
present a software system that is able to extract and visualize some topolog-
ical aspects of three-dimensional vector fields. The various critical points are
characterized using the eigenvalues of the Jacobian. This technique was also
suggested by Helman and Hesselink [13]. But the whole topology of a three-
dimensional flow is not yet available. There, stream-surfaces are required to
represent separatrices. A few algorithms for computing stream-surfaces ex-
ist [16, 24] but are not yet integrated in a topological algorithm.

There are a few algorithms that are capable of finding closed streamlines
in dynamical systems that can be found in the numerical literature. Aprille
and Trick [2] propose a so called shooting method. There, the fixed point of
the Poincaré map is found using a numerical algorithm like Newton-Raphson.
Dellnitz et al. [7] detect almost cyclic behavior. It is a stochastic approach
where the Frobenius-Perron operator is discretized. This stochastic measure
identifies regions where trajectories stay very long. But these mathematical
methods typically depend on continuous dynamical systems where a closed
form description of the vector field is available. This is usually not the case in
visualization and simulation where the data is given on a grid and interpolated
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inside the cells. Van Veldhuizen [29] uses the Poincaré map to create a series of
polygons approximating an attracting closed streamline. The algorithm starts
with a rough approximation of the closed streamline. Every vertex is mapped
by the Poincaré map iteratively to get a finer approximation. Then, this series
converges to the closed streamline. De Leeuw et al. [6] present a simplification
method based on the Poincaré index to simplify two-dimensional vector fields.
An example is shown where a closed streamline is simplified to a single critical
point. Even though the method might be able to detect closed streamlines in
a two-dimensional flow based on the Poincaré index, it is hardly extendable
to 3-D.

To get a hierarchical approach for the visualization of invariant sets, and
therefore of closed streamlines as well, Bürkle et al. [3] enclose the invariant
set by a set of boxes. They start with a box that surrounds the invariant set
completely which then is successively bisected in cycling directions. The pub-
lication of Guckenheimer [11] gives a detailed overview concerning invariant
sets in dynamical systems.

Some publications deal with the analysis of the behavior of dynamical
systems. Schematic drawings showing the various kinds of closed streamlines
can be found in the books of Abraham and Shaw [1]. Fischel et al. [8] presented
a case study where they applied different visualization methods to dynamical
systems. In their applications also strange attractors, such as the Lorentz
attractor, and closed streamlines occur.

Wegenkittl et al. [30] visualize higher dimensional dynamical systems. To
display trajectories, parallel coordinates [17] are used. A trajectory is sampled
at various points in time. Then, these points are displayed in the parallel
coordinate system and a surface is extruded to connect these points. Hepting
et al. [14] study invariant tori in four dimensional dynamical systems by using
suitable projections into three dimensions to enable detailed visual analysis
of the tori.

Löffelmann [19, 20] uses Poincaré sections to visualize closed streamlines
and strange attractors. Poincaré sections define a discrete dynamical system
of lower dimension which is easier to understand. The Poincaré section which
is transverse to the closed streamline is visualized as a disk. On the disk, spot
noise is used to depict the vector field projected onto that disk. Using this
method, it can be clearly recognized whether the flow, for instance, spirals
around the closed streamline and is attracted or repelled or if it is a rotating
saddle. Additionally, streamlines and stream-surfaces show the vector field in
the vicinity of the closed streamline.

3 Theory

This chapter introduces the fundamental theory which is needed for the follow-
ing sections. The description mainly follows the book of Hirsch and Smale [15].

3.1 Data Structures

In most applications in scientific visualization the data is not given as a closed
form solution. The same holds for vector fields. Often, a vector field results
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from a simulation or an experiment where the vectors are measured. In such a
case, the vectors are given at only some points of the domain of the Euclidean
space. These points are then connected by a grid. A special interpolation
computes the vectors inside each cell of that grid. In this paper, we restrict
ourselves to a few types of grids, basically triangular and tetrahedral grids.
Using barycentric coordinates, vectors inside the cells can be interpolated
linearly from the vectors given at the vertices [26, 31].

3.2 Vector Field Features

From a topological point of view critical points are an important part of
vector fields. This special feature is described in more detail in this section.
We start with the definition of critical points in the general case and then
classify different types of singularities.

Definition 3.1 (Critical point)
Let v : W → Rn be a vector field which is continuously differentiable. Let
further x0 ∈W be a point where v(x) = 0. Then x0 is called a critical point,
singularity, singular point, zero, or equilibrium of the vector field.

Critical points can be classified using the eigenvalues of the derivation of
the vector field. For instance, we can identify sinks that purely attract the
flow in the vicinity while sources repel it purely. A proof for this attracting
respectively repelling behavior can be found in [15].

Definition 3.2 (Sink and Source)
Let v be a vector field which is continuously differentiable and x0 a critical
point of v. Let further Dv(x0) be the derivation of the vector field v at x0. If
all eigenvalues of Dv(x0) have negative real parts, x0 is called a sink. If all
eigenvalues of Dv(x0) have positive real parts, x0 is called a source.

Streamlines are a very intuitive way to depict the behavior of the flow.
But when computing such a streamline it may occur that the streamline com-
putation does not terminate. This mostly is due to closed streamlines where
the streamline ends up in a loop that cannot be left. These closed stream-
lines are introduced and explained in this section. More about the theoretical
background can be found in several books [34, 23].

Definition 3.3 (Closed streamline)
Let v be a vector field. A closed streamline γ : R → Rn, t 7→ γ(t) is a
streamline of a vector field v such that there is a t0 ∈ R with γ(t+nt0) = γ(t)
∀n ∈ N and γ not constant.

3.3 General Features in Vector Fields

The topological analysis of vector fields considers the asymptotic behavior of
streamlines. To describe this asymptotic behavior we have two different kinds
of so called limit sets, the origin set or α-limit set of a streamline and the end
set or ω-limit set.
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Definition 3.4 (α- and ω-limit set)
Let s be a streamline in a given vector field v. Then we define the α-limit set
as the following set: {p ∈ Rn|∃(tn)∞n=0 ⊂ R, tn → −∞, limn→∞ s(tn) → p},
while the ω-limit set is defined as follows: {p ∈ Rn|∃(tn)∞n=0 ⊂ R, tn → ∞,
limn→∞ s(tn) → p}. We speak of an α- or ω-limit set L of v if there exists
a streamline s in the vector field v that has L as α- or ω-limit set.

���
�

Fig. 1. Example for α- and ω-limit sets.

If the α- or ω-limit set of a streamline consists of only one point, this
point is a critical point. The most common case of a α- or ω-limit set in a
planar vector field containing more than one inner point of the domain is a
closed streamline. Figure 1 shows an example for α- and ω-limit sets. There
is one critical point and one closed streamline contained in the vector field.
Both, the critical point and the closed streamline are their own α- and ω-limit
set. For every other streamline the closed streamline is the ω-limit set. If the
streamline starts inside the closed streamline, the critical point is the α-limit
set. Otherwise the α-limit set is empty. With these explanations, we can give
a precise definition of a topological feature of a vector field.

Definition 3.5 (Topological feature)
Let v be a vector field. Then, a topological feature of v is an α- or ω-limit
set of the vector field v describing the asymptotic behavior of the flow.

As motivated in the previous example, sources, sinks, and most closed
streamlines are considered such a topological feature.

4 Detection in Planar Flows

As can be seen from the definition of sinks and sources, these topological
features are relatively easy to determine by calculating the eigenvalues of the
flow. Unfortunately, it is not as easy to find the closed streamlines of a flow.
Therefore, this chapter describes an algorithm that detects if an arbitrary
streamline c converges to a closed curve, also called a limit cycle. This means
that c has γ as α- or ω-limit set depending on the orientation of integration.
We do not assume any knowledge on the existence or location of the closed
curve. We exploit the fact that we use linear interpolation inside the cells for
the proof of our algorithm. But the principle of the algorithm works on any
piecewise defined planar vector field where one can determine the topology
inside the pieces.



6 Thomas Wischgoll and Joerg Meyer

4.1 Detection of Closed Streamlines

In a precomputational step every singularity of the vector field is determined.
To find all stable closed streamlines we mainly compute the topological skele-
ton of the vector field. We use an ordinary streamline integrator, such as an
ODE solver using Runge-Kutta, as a basis for our algorithm. In addition, this
streamline integrator is extended so that it is able to detect closed stream-
lines. In order to find all closed streamlines that reside inside another closed
streamline we have to continue integration after we found a closed streamline
inside that region.

The basic idea of our streamline integrator is to determine a region of the
vector field that is never left by the streamline. According to the Poincaré-
Bendixson-Theorem, a streamline approaches a closed streamline if no singu-
larity exists in that region. To reduce computational cost we first integrate
the streamline using a Runge-Kutta-method of fifth order with an adaptive
stepsize control. Every cell that is crossed by the streamline is stored during
the computation. If a streamline approaches a limit cycle it has to reenter the
same cell again. This results in a cell cycle.

Definition 4.1 (Cell cycle)
Let s be a streamline in a given vector field v. Further, let G be a set of cells
representing an arbitrary rectangular or triangular grid without any holes. Let
C ⊂ G be a finite sequence c0, . . . , cn of neighboring cells where each cell is
crossed by the streamline s in exactly that order and c0 = cn. If s crosses
every cell in C in this order again while continuing, C is called a cell cycle.

This cell cycle identifies the previously mentioned region. To check if this
region can be left we could integrate backwards starting at every point on the
boundary of the cell cycle. If there is one point converging to the currently
investigated streamline we know for sure that the streamline will leave the
cell cycle. If not, the currently investigated streamline will never leave the
cell cycle. Since there are infinitely many points on the boundary this, of
course, results in a non-terminating algorithm. To solve this problem we have
to reduce the number of points that need to be checked. Therefore we define
potential exit points:

Definition 4.2 (Potential exit points)
Let C be a cell cycle in a given grid G as in definition 4.1. Then there are
two kinds of potential exit points. First, every vertex of the cell cycle C is
a potential exit point. Second, every point on an edge at the boundary of C
where the vector field is tangential to the edge is also a potential exit point.
Here, only edges that are part of the boundary of the cell cycle are considered.
Additionally, only the potential exit points in the spiraling direction of the
streamline need to be taken into account.

To determine if the streamline leaves the cell cycle, a backward integrated
streamline is started to see where a streamline has to enter the cell cycle in
order to leave at that exit. We will show later that it is sufficient to only check
these potential exit points to test if the streamline can leave the cell cycle.
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Definition 4.3 (Real exit points)
Let P be a potential exit point of a given cell cycle C as in definition 4.2. If
the backward integrated streamline starting at P does not leave the cell cycle
after one full turn through the cell cycle, the potential exit point is called a
real exit point.

Since a streamline cannot cross itself, the backward integration starting
at a real exit point converges to the currently investigated streamline. Conse-
quently, the currently investigated streamline leaves the cell cycle near that
real exit point. Figure 2(a) shows an example for such a real exit point.

If on the other hand no real exit point exists we can determine for every
potential exit point where there is a region with an inflow that leaves at
that potential exit. Consequently, the currently investigated streamline cannot
leave near that potential exit point as shown in figure 2(b).

exit

(a)

exit

exit

entry

(b)

Fig. 2. If a real exit point can be reached, the streamline will leave the cell cycle
(a); if no real exit point can be reached, the streamline will approach a limit cycle
(b).

With these definitions we can formulate the main theorem for the algo-
rithm:

Theorem 4.4
Let C be a cell cycle with no singularity inside and E the set of potential exit
points. If there is no real exit point among the potential exit points E or there
are no potential exit points at all then there exists a closed streamline inside
the cell cycle.

Proof: (Sketch)
Let C be the cell cycle. It is obvious that the streamline cannot leave the cell
cycle C if all backward integrated streamlines started at every point on the
boundary of C leave the cell cycle C. According to the Poincaré-Bendixson-
theorem, there exists a closed streamline inside the cell cycle in that case.

We will show now that it is sufficient to only consider the potential exit
points. If the backward integrated streamlines starting at all these potential
exit points leave the cell cycle the backward integration of any point on an
edge will also do.

Figure 3 shows the different configurations of potential exits. Let E be an
arbitrary point on an edge between two potential exit points. In part (a) both
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backward integration

1 2V VE

leaves cell cycle

current streamline

(a)

1 2V VT E

current streamline

backward integration

leaves cell cycle

(b)

backward integration

1 2V VE

current streamline

(c)

backward integration

1 2V VT E

current streamline

(d)

Fig. 3. Different cases of potential exits. (a) and (b) is impossible because stream-
lines cannot cross each other, (c) contradicts the linear interpolation on an edge, in
(d) backward integrations converge to the current streamline so that the point E is
a real exit.

backward integrated streamlines starting at the vertices V1 and V2 leave the
cell cycle. Consequently, E cannot be an exit. It would need to cross one of
the other backward integrated streamlines which is not possible.

Part (b) of figure 3 shows the case where the vector at a point on the edge
is tangential to the edge. Obviously, if E lies between V1 and T the backward
integrated streamline will leave the cell cycle immediately. If it lies between T
and V2 and converges to the currently investigated streamline it has to cross
the backward integrated streamline started at T . This contradicts the fact
that streamlines cannot cross each other. Because of the linear interpolation
at the edge, part (c) is also impossible.

We have shown that the currently investigated streamline cannot leave
the cell cycle if there are only real exits. Consequently, there exists a closed
streamline inside the cell cycle C since there is no singularity inside C. o

With theorem 4.4 it is possible to describe the algorithm in detail. It mainly
consists of three different stages: first a streamline is integrated and one cell
change after the other is identified. At each cell the algorithm checks if a cell
cycle is completed. In case of a cell cycle it looks for exits by going backwards
through the crossed cells and looking for potential exit points. Finally, the
exits that were found are validated. Therefore, a streamline starting at the
potential exit is integrated backwards through the whole cell cycle. If it is not
possible to integrate backwards one full turn throughout the cell cycle for at
least one backward integration a closed streamline resides in this cell cycle.
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Otherwise the forward integration of the original streamline is continued. The
algorithm exits if no real exit points are found among all of the potential exit
points or if a critical point or the boundary of the vector field is reached.
Theorem 4.4 guarantees that the algorithm then detects closed streamlines if
every potential exit point [32] is checked.

5 Detection of Features in 3-D Vector Fields

Closed streamlines can be found in three-dimensional vector fields as well.
For instance, the Terrestrial Planet Finder Mission of NASA [21] deals with
stable manifolds where 3-D periodic halo orbits play an important role. These
orbits are nothing else than closed streamlines in a three-dimensional vector
field.

This section describes how to detect closed streamlines in three-dimensional
vector fields. Although the principle to detect closed streamlines in a three-
dimensional vector field is similar to the two-dimensional case, there are some
differences. The following subsections explain the theoretical and algorithmic
differences and similarities.

5.1 Theory

It is assumed that the data is given on a tetrahedral grid, but the principle
would work on other cell types as well. The detection of a cell cycle works in
the same way as in definition 4.1. Of course, the cells are three-dimensional
in this case. To check if we can leave the cell cycle we have to consider every
backward integrated streamline starting at an arbitrary point on a face of the
boundary of the cell cycle. Looking at the edges of a face we can see directly
that it is not sufficient to just integrate streamlines backwards. It is necessary
to integrate a stream-surface backwards starting at an edge of the cell cycle.
The streamlines starting at the vertices of that edge may leave the cell cycle
earlier than the complete surface. In fact, it often occurs that one of these
streamlines exit the cell cycle directly while parts of the stream surface itself
may stay inside. Consequently, a different definition for exits is required.

Definition 5.1 (Potential Exit Edges)
Let C be a cell cycle in a given tetrahedral grid G as in Definition 4.1. Then
we call every edge at the boundary of the cell cycle a potential exit edge.
Analogue to the two-dimensional case we define a line on a boundary face
where the vector field is tangential to the face as a potential exit edge also.

Due to the fact that we use linear interpolation inside the tetrahedrons
it can be shown that there will be at least a straight line on the face where
the vector field is tangential to the face or the whole face is tangential to the
vector field [33]. Therefore, isolated points on a face where the vector field is
tangential to the face do not need to be considered. When dealing with edges
as exits, stream-surfaces need to be computed in order to validate these exits.
Analogue to definition 4.3 we define real exit edges.
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Definition 5.2 (Real exit edge)
Let E be a potential exit edge of a given cell cycle C as in definition 5.1. If
the backward integrated stream-surface does not completely leave the cell cycle
after one full turn through C then this edge is called a real exit edge.

For the backward integrated stream-surface a simplified version of the
stream-surface algorithm introduced by Hultquist [16] is used. Since there
is no triangulation of the surface required, only the integration step of that
algorithm needs to be executed. Initially, we start the backward integration
at the vertices of the edge. If the distance between two neighboring backward
integrations is greater than a specific error limit a new backward integration
is started in-between. This continues until an approximation of the stream-
surface that respects the given error limit has been reached.

The integration stops when the whole stream-surface leaves the cell cycle or
when one full turn through the cell cycle is completed. To construct the surface
properly it may be necessary to continue a backward integration process across
the boundary of the cell cycle. This is due to the fact that parts of the stream-
surface are still inside the cell but the backward integrated streamlines have
already left it. With these definitions and motivations we can formulate the
main theorem for the algorithm:

Theorem 5.3
Let C be a cell cycle as in definition 4.1 with no singularities inside and E the
set of potential exit edges. If there is no real exit edge among the potential exit
edges E or there are no potential exit edges at all then there exists a closed
streamline inside the cell cycle.

Proof: (Sketch)
Let C be a cell cycle with no real exit edge. Every backward integrated stream-
surface leaves the cell cycle C completely. As in the 2-D case it is obvious
that the cell cycle cannot be left if every backward integration starting at an
arbitrary point on a face of the boundary of the cell cycle C leaves that cell
cycle. Let Q be an arbitrary point on a face F of the boundary of the cell
cycle C. Let us assume that the backward integrated streamline starting at
Q converges to the currently investigated streamline. We will show that this
is a contradiction.

First case: The edges of face F are exit edges and there is no point on F
where the vector field is tangential to F .
From a topological point of view the stream-surfaces starting
at all edges of F form a tube that leaves the cell cycle. Since
the backward integrated streamline starting at Q converges to
the currently investigated streamline it does not leave the cell
cycle. Consequently, it has to cross the tube formed by the
stream-surfaces. This is not possible because streamlines can-
not cross each other and therefore a streamline cannot cross a
stream-surface either.

Second case: There is a potential exit edge e on the face F that is not part
of the boundary of F .
Obviously, the potential exit edge e divides the face F into
two parts. In one part there is outflow out of the cell cycle
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C while at the other part there is inflow into C because the
flow is tangential at e. We do not need to consider the part
with outflow any further because every backward integrated
streamline starting at a point of that part immediately leaves
the cell cycle C.
The backward integrated surface starting at the potential exit
edge e and parts of the backward integrated stream-surfaces
starting at the boundary edges of the face F again form a tube
from a topological point of view. Consequently, the backward
integrated streamline starting at Q has to leave the cell cycle
C.

We have shown that the backward integrated streamline starting at the
point Q has to leave the cell cycle also. Since there is no backward inte-
grated streamline converging to the currently investigated streamline at all,
the streamline will never leave the cell cycle. o

5.2 Algorithm

With theorem 5.3 it is possible to describe the algorithm in detail. Similar to
the two-dimensional case, a streamline is integrated while every cell change is
memorized to detect cell cycles. If a cell cycle was found the algorithm looks
for potential exits by going backwards through the cell cycle and validating
these using backward integrated stream-surfaces. According to theorem 5.3,
there exists a closed streamline inside this cell cycle if all backward integrated
stream-surfaces leave the cell cycle. In that case, we can find the exact loca-
tion by continuing the integration process of the streamline that we currently
investigate until the difference between two subsequent turns is small enough.
This numerical criterion is sufficient in this case since the streamline will never
leave the cell cycle.

6 Results

The first example is a simulation of a swirling jet with an inflow into a steady
medium. The simulation originally resulted in a three-dimensional vector field
but we used a cutting plane and projected the vectors onto this plane to get
a two-dimensional field. In this application one is interested in investigating
the turbulence of the vector field and in regions where the fluid stays for
a very long time. This is necessary because some chemical reactions need
a special amount of time. These regions can be located by finding closed
streamlines. Figure 4 shows some of the closed streamlines detected by our
algorithm in detail. In addition, a hedgehog representation of the vector field
is given. All these limit cycles are located in the upper region of the vector
field. Figure 5 shows all closed streamlines of this vector field including the
topological skeleton.

To test our 3-D detection, a synthetically created dataset which includes
one closed streamline is used. We first created a two-dimensional vector field.
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Fig. 4. Vorticity vector field of a turbulent flow – limit cycles.

The vector field contains a saddle singularity in the center and two symmet-
rical sinks. To get a three-dimensional flow we rotated the two-dimensional
vector field around the axis of symmetry. Due to the symmetrical arrangement
of the sinks this vector field includes exactly one closed streamline. Figure 6
shows the result of the algorithm including two stream-surfaces to depict
the surrounding flow. Since the closed streamline is attracting, the stream-
surfaces approaches the closed streamline. The stream-surface gets smaller
and smaller while spiraling around the closed streamline. After a few turns
around the closed streamline, it is only slightly wider than a streamline and
finally it totally merges with the closed streamline. A random color scheme
for the surface is used to enhance the three-dimensional effect. Overall, it is
shown that the algorithms discussed in this paper are capable of detecting
most of the previously defined features.

Fig. 5. Vorticity vector field visualized by the topological skeleton including closed
streamlines.
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Fig. 6. Limit cycle in a 3-D vector field with stream-surfaces.

7 Impending Challenges

If more than one closed streamline crosses the same cell, the algorithm may fail
to detect these closed streamlines, for instance, if there is a structural unstable
configuration with one closed streamline inside the other both located in the
same cell cycle. One closed streamline acts like a source, lets say the inner one,
while the other one behaves like a sink. Therefore, the flow originates at the
first one and is attracted by the second one. Since there is an outflow from the
cell cycle the algorithm cannot distinguish between a regular outflow and this
configuration. A solution for such a situation could be to use a subdivision of
the grid for the detection of cell cycles only to avoid the presence of two closed
streamlines in the same cell cycle. In addition, the algorithm for finding closed
streamlines in 3-D needs to be applied to more realistic datasets. Also, there
exist more closed structures in 3-D such as a torus for instance. Therefore,
the algorithm could be extended to find these structures as well.

8 Conclusion

In order to complete the topological analysis of vector fields, this article de-
fined topological features solely based on the asymptotic behavior of the flow.
Since singularities are not the only features inside a vector field that can
attract or repel the surrounding flow, this is an important extension to topo-
logical analyses. Algorithms were presented that are capable of successfully
detecting these topological features both in two- and three-dimensional vector
fields.
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20. H. Löffelmann, T. Kučera, and E. Gröller. Visualizing Poincaré Maps Together
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