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Summary. Curve-skeletons of 3-D objects are medial axes shrunk to a single line.
There are several applications for curve-skeletons. For example, animation of 3-D
objects, such as an animal or a human, as well as planning of flight paths for virtual
colonoscopy. Other applications are the extraction of center lines within blood vessels
where center lines are used to quantitatively measure vessel length, vessel diameter,
and angles between vessels. The described method computes curve-skeletons based
on a vector field that is orthogonal to the object’s boundary surface. A topological
analysis of this field then yields the center lines of the curve-skeletons. In contrast to
previous methods, the vector field does not need to be computed for every sampled
point of the entire volume. Instead, the vector field is determined only on the sample
points on the boundary surface of the objects. Since most of the computational time
was spent on calculating the force field in previous methods, the proposed approach
requires significantly less time compared to previous vector-based techniques while
still achieving a better accuracy and robustness compared to methods based on
Voronoi tessellations.

1.1 Introduction

Curve-skeletons describe the very basic features of an object. They describe
a thinned version of the object represented as some type of stick model re-
sulting in the center-lines of the object. Therefore, the use of curve-skeletons
can prove useful for applications, such as animation [43] or flight planning
for virtual colonoscopy [19]. Similarly, accurate curve-skeleton methods can
be used for extracting quantitative measurements from computed tomogra-
phy (CT) scanned vascular structures. Here, the curve-skeleton describes the
center lines of the vessels. These can then be used to measure vessel radius,
vessel lengths, and angles between vessels within the volumetric data set re-
trieved by using the CT scanner. This is the application that motivated the
development of the algorithm described in this paper. In order to derive these
measurements from the volumetric data set, an accurate extraction method
for curve-skeletons is desirable. For example, thinning-based techniques that
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work in the voxel space of the volumetric data set tend to generate jagged
lines which are in no way suitable for determining angles between vessels. Sim-
ilarly, inaccuracies can occur when computing the radii of the vessels. Hence,
an approach that only uses the volumetric data set in order to identify the
boundary surface of the contained object is more promising.

The algorithm described in this paper is exactly of this type. It is ca-
pable of extracting the boundary surface of an object that is defined by a
volumetric data set at sub-voxel level. For this, it determines the location of
the maximal gradient within the volumetric data set similar to Canny’s [9]
maxima-suppression technique but extended to three dimensions. Since the
algorithm only relies on points extracted from the volumetric data set but
not on its underlying structured grid, it can also be applied to objects defined
by a point set without any restrictions.

Techniques used for computing the topological graph of a vector field are
applied to determine the curve-skeleton. First, for all points on the object’s
boundary vectors are computed that are orthogonal to the boundary surface.
There are different options for computing these vectors. They either can be
derived by determining the normal vector of a plane that is defined by a least-
square fit of the point and its neighbors. Or – in case of the object being defined
by a volumetric data set – the image gradients determined in the previous step
can be used. In both cases, the normal vectors can be determined in such a way
that they are facing inwards with respect to the object. The entire vector field
can then be determined by computing a tetrahedrization of the entire point
cloud and then linearly interpolating within the tetrahedra. In order to ensure
that only the curve-skeleton inside the object is extracted, all tetrahedra that
are located outside the object are removed based on the normal vectors.

A topological analysis of the vector field within the faces of every tetra-
hedron yields points on the curve-skeleton. By following the topology of the
tetrahedrization, points on the curve-skeleton within neighboring tetrahedra
can be connected resulting in the entire curve-skeleton.

A detailed description of the algorithm can be found in section 1.3. The
next section illustrates related work and compares it to the described ap-
proach. Subsequently, the theoretical background with regard to the topo-
logical analysis of vector fields is explained. Section 1.4 shows results of the
algorithm applied to various data sets, followed by conclusions and future
work.

1.2 Related Work

Several approaches for extracting curve-skeletons or medial axes can be found
in the literature. A very good overview of available techniques can be found
in the paper by Cornea et al. [11].

Some methods start with all voxels of a volumetric data set and use a
thinning technique to shrink down the object to a single line. Directional
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thinning approaches use a specific order in which voxels are removed. For
example, directions, such as up or down, are used to define this order and
conditions are used to identify endpoints [3, 8, 18, 23, 25, 30, 31, 34, 42]. Since
these methods are sensitive with respect to the order in which the voxels are
removed the resulting curve-skeleton may not be centered. Non-directional
methods [6, 39] or fully parallel approaches [14, 27, 29] do not suffer from this
disadvantage. Ideally, the topology of the object should be observed. Such an
approach was proposed by Lobregt et al. [24] which is the basic technique
used in commercial software systems, such as AnalyzeTM developed by the
Mayo Clinic. The disadvantage of this approach is that it tends to produce
jagged lines which do not allow accurate measurements of angles between
parts of the object, such as individual vessels of a vascular structure. Other
approaches [40] classify the voxels in different groups, such as edge, inner,
curve, or junction and re-classify after removal of a voxel. A similar algorithm
is proposed by Palagyi et al. [30]. The disadvantage of thinning algorithms is
that they can only be applied to volumetric data sets due to the nature of
these algorithms.

To avoid this disadvantage, other approaches deploy the distance trans-
form [17] or distance field in order to obtain a curve-skeleton. For each point
inside the object, the smallest distance to the boundary surface is determined.
For this, the Euclidian metric or the <3,4,5> metric [5] can be used. Also, fast
marching methods [36, 41] can be deployed to compute the distance field. Vox-
els representing the center lines of the object are identified by finding ridges
in the distance field. The resulting candidates must then be pruned first. The
resulting values are then connected using a path connection or minimum span
tree algorithm [38, 44, 48]. Methods used to identify points on the ridges in-
clude distance thinning [10, 15, 16, 33], divergence computing [7], gradient
searching [4], thresholding the bisector angle [28], geodesic front propaga-
tion [32], or shrinking the surface along the gradient of the distance field [35].
The distance field can also be combined with a distance-from-source field to
compute a skeleton [49]. Based on an anisotropic diffusion applied to the image
gradients, Yu et al [47] extract skeletons from 2D images.

Techniques based on Voronoi diagrams [2, 13] define a medial axis using
the Voronoi points. Since this approach usually does not result in a single
line but rather a surface shaped object, the points need to be clustered and
connected in order to obtain a curve-skeleton. Voronoi-based methods can be
applied to volumetric data sets as well as point sets. Due to the fact that
clustering of the resulting points is required these approaches can lack some
accuracy.
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1.3 Methodology

It is assumed that the reader is familiar with singularities in vector fields and
2-D vector field topology. If necessary, a good overview of these topics can be
found in [20, 45, 46].

The algorithm for determining the curve-skeleton consists of several steps.
If the object is given as a volumetric data set the object’s boundary has
to be extracted first. Then, a vector field is computed that is orthogonal to
the object’s boundary surface. Once the vector field is computed, the curve-
skeleton can be determined by applying a topological analysis to this vector
field. The following subsections explain these steps in detail.

1.3.1 Extracting the Boundary of the Object

If the object is given as a set of points, for example measured by a laser
scanner, the object’s boundary is already defined. If the object is defined
by a volumetric data set, for example from a CT scan, the boundary of the
object has to be determined first. A volumetric data set consists of voxels
aligned along a regular, three-dimensional grid. Since it is generally not likely
that the boundary of the original object is exactly located at these voxels,
better precision can be achieved by finding the exact location between a set of
voxels. Since an accurate representation of the object’s boundary is crucial to
the algorithm, improving the precision is an essential step. The method used
within the described system uses similar techniques as described by Canny’s
non-maxima suppression [9, 21] but extended to three dimensions.

First, the image gradients are computed. Using a fixed threshold, all voxels
with a gradient length below this threshold are neglected. Then, the gradients
of the remaining voxels are compared to its neighbors to identify local maxima
along the gradient. In 3-D, the direct neighborhood of a single voxel generally
consists of 26 voxels forming a cube that surrounds the current voxel. In order
to find the local maximum along the current gradient, the gradients in the
neighborhood in positive and negative direction of the current gradient have
to be determined. The current implementation of the described system uses
tri-linear interpolation. Based on these three gradient values, i.e. the original
image gradient and the two interpolated values, the location of the maximal
gradient can be identified, resulting in a more accurate representation of the
object’s boundary and therefore a more precise center line. Hence, this step
improves the accuracy of the resulting curve-skeleton. However, the algorithm
would still work using the original voxels identified.

Once all points on the boundary are extracted from the volumetric data
set using this gradient approach with sub-voxel precision, the resulting point
cloud can be further processed in order to identify the skeleton.
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1.3.2 Computing the Vector Field

The described method computes a curve-skeleton by applying a topological
analysis to a vector field that is determined based on the geometric configura-
tion of the object of which the curve-skeleton is to be determined. The vector
field is computed in such a way that the vectors are orthogonal to the object’s
boundary surface. The vectors inside the object are then interpolated linearly.

Different approaches are possible for calculating such a vector field. A
repulsive force field can be determined that uses the surrounding points on
the object’s boundary surface as used by Cornea et al. [12]. The repulsive force
is defined similarly to the repulsive force of a generalized potential field [1, 22].
The basic idea is to simulate a potential field that is generated by the force
field inside the object by charging the object’s boundary. Another way is to
define a normal vector by using the neighboring points in addition to the
current one and then defining a plane that is approximated by these points.
The normal of this plane then defines the vector corresponding to the current
point.

If the data is given as a volumetric data set the image gradients can be used
to define the vectors on the object’s boundary surface. These image gradients
are computed already in the previous step as they are needed for extracting
the object’s boundary and determining the sub-voxel precision. The image
gradients are computed using the derivative of a Gaussian which also results
in a smoothing of the gradient vectors to address noise that may be present in
the data. In our experiments, the resulting gradient vectors were sufficiently
accurate to determine an accurate center line as shown by the validation of
the algorithm. Note that all three methods result in vectors pointing to the
inside of the object.

1.3.3 Determining the Curve-Skeleton

In order to determine the curve-skeleton of the object, a tetrahedrization of all
points on the object’s boundary is computed first. For this, Si’s [37] very fast
implementation of a Delaunay tetrahedrization algorithm is used. By using
the previously computed vectors that point to the inside of the object, outside
tetrahedra can be distinguished from tetrahedra that are located inside the
object. This way, all outside tetrahedra can be removed, leaving a Delaunay
tetrahedrization of the inside of the object only. Since vectors are known for
each vertex of every tetrahedron, the complete vector field can be computed
using this tetrahedrization by interpolating linearly within each tetrahedron.
This vector field is then used to identify points of the curve-skeleton which
are connected which each other later on.

Since the vector field is now defined within the entire object, one could
use an approach similar to the one used by Cornea et al. [12] at this point
and compute the 3-D topological skeleton of the vector field which yields the
curve-skeleton of the object. However, since singularities are very rare in a



6 Thomas Wischgoll

3-D vector field Cornea et al. had to introduce additional starting points for
the separatrices, such as low divergence points and high curvature points, in
order to get a good representation of the curve-skeleton. Therefore, a different
approach is described in this paper that analyzes the vector field on the faces
of the tetrahedra. In order to be able to perform a topological analysis on the
faces of the tetrahedra, the vector field has to be projected onto those faces
first. Since linear interpolation is used within the tetrahedra, it is sufficient
to just project the vectors at the vertices onto each face and then interpolate
linearly within the face using these newly computed vectors. Based on the
resulting vector field, a topological analysis can be performed on each face of
every tetrahedron.

Points on the curve-skeleton can then be identified by computing the sin-
gularities within the vector field interpolated within each and every face of
the tetrahedrization. For example, for a perfectly cylindrical object, the vec-
tors computed at the cylinder’s boundary point directly at the center of the
cylinder. When looking at the resulting vector field at a cross section of the
cylinder, a focus singularity is located at the center of the cylinder within this
cross section. The location of this focus singularity resembles a point on the
curve-skeleton of the cylinder. Hence, a singularity within a face of a tetrahe-
dron resembles a point of the curve-skeleton. Since the vectors at the object’s
boundary point inwards, only sinks need to be considered in order to identify
the curve-skeleton. Due to the fact that not all objects are cylindrical in shape
and due to numerical errors and tolerances, points on the curve-skeleton can
be identified by looking for sinks that resemble focus and spiral singularities.

Obviously, only faces that are close to being a cross section of the ob-
ject should be considered to identify points on the curve-skeleton. In order
to determine tetrahedra whose faces resemble a cross-section of the object,
the vectors at the vertices can be used. If the vectors at the vertices, which
are orthogonal to the object’s boundary, are approximately coplanar with the
face, then this face describes a cross section of the object. As a test, the scalar
product between the normal vector of the face and the vector at all three ver-
tices can be used. If the result is smaller than a user-defined threshold this face
is used to determine points on the curve-skeleton. A fixed threshold works for
most data sets. However, in some cases a sub-optimal choice of this threshold
can result in false bifurcations where small segments (usually just a single line
segment) appears to be branching off of the main skeleton. Computing the
singularity on one of the faces fulfilling the threshold criterion then results in
a point which is part of the curve-skeleton. Since linear interpolation is used
within the face, only a single singularity can be present in each face.

Once individual points of the curve-skeleton are computed by identifying
the focus and spiral singularities within the faces of the tetrahedra, this set
of points needs to be connected in order to retrieve the entire curve-skeleton.
Since the tetrahedrization describes the topology of the object, the connec-
tivity information of the tetrahedra can be used. Thus, identified points of
the curve-skeleton of neighboring tetrahedra are connected with each other
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Fig. 1.1. Sub-section of the porcine heart data set visualized as a volume rendered
image (left) and the extracted curve-skeleton of the same sub-section of the porcine
heart data set (right).

forming the entire curve-skeleton. In some occurances, an additional gap clos-
ing step is required. Particularly, this is sometimes necessary at bifurcations
where a smaller vessel branches off of a comparably large one. An example
can be seen in figure 1.1 where the connection between the major vessel and
the vessel branching off at the center of the image is missing. This can be
easily detected by looking at the terminal nodes of the graph representing the
center lines. For all these nodes, the algorithm checks if there is another graph
it can be connected to. If this connection is within a vessel, the connection is
added. To check this, the tetrahedrization can be used since the connection is
only inside a vessel if it is entirely covered by tetrahedra.

1.4 Results

The algorithm was tested on several different data sets. It was mainly designed
for extracting center lines from CT scanned volumetric data sets of porcine
hearts where the arterials were previously perfused with a contrast enhancing
polymer and computing the vessel radii as the distance between the center
line and the vessel boundary. Figure 1.2(left) shows an example of such a data
set.

The described algorithm is capable of extracting the curve-skeleton from
such a volumetric data set in order to identify the center lines of the arterial
vessels. The resulting curve-skeleton is depicted in figure 1.2(right). The fig-
ure shows the curve-skeleton extracted by the described algorithm before the
gap closing step was applied as well as the point set representing the vessel
boundaries.

Due to the densely located vessels of the right coronary arterial (RCA)
tree, the extracted curve-skeleton seems rather cluttered and it is difficult to
distinguish between lines at different depths. However, the extracted curve-
skeleton describes the center lines of the arterial vessels found within the data
set very well as illustrated below. When using a sub-section of the porcine
heart data set, it can be seen that the curve-skeleton is located at the center
of the arterial vessels, as shown in figure 1.3.
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Fig. 1.2. Volume rendering (with shading enabled) of a previously perfused porcine
heart which was scanned using a standard hospital CT scanner (left) and curve-
skeleton of the porcine heart data set using the described algorithm beofer the gap
closing step; to enhance visibility in the paper the thickness of the lines and points
within the volumetric data set is increased (right).

Fig. 1.3. Sub-section of the porcine heart data set showing the extracted center
line (left) and the underlying tetrahedrization used for identifying the center line
(right).

In order to validate the accuracy of the computed center lines, the vessel
radii were computed for the main trunk of the arterial branches of a series
of five porcine heart data sets as the distance between the center line and
the vessel boundary and then compared to manual optical measurements.
The optical measurements were performed by a domain expert after digesting
away the tissue leaving only the contrast enhancing polymer used to fill the
arteries. Based on the cast formed by the polymer, radii and distance to the
most proximal vessel were then measured. Figure 1.7 (color plates) shows
a comparison of the two different measurements for a typical data set. The
agreement between the measurements is very good, with an error of 0.06mm

(scan resolution was 0.6mm), which underlines the accuracy of the center
lines. For the three major branches (LAD, LCX, and RCA) of the five procine
hearts, the root mean square error between the two measurements is 0.16mm

and the average deviation is 0.13mm.
The described algorithm for extracting curve-skeletons has some definite

advantages over, for example, Voronoi-based approaches. Voronoi-based ap-
proaches define a medial axis that is not necessarily a line, but more like a set
of points defining a surface. In a post-processing step, these points need to
be shrunk down to define a line. Even though the arterial vessels are rather
round due to the fact that they are pressurized, a Voronoi-based algorithm
only determines a fuzzy line around the actual center line of the vessels. In
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addition, Voronoi-based approaches tend to generate significantly more false
bifurcations in form of small, short vessels branching off. The root mean square
error of the measurements computed using the presented technique of 0.16mm

are more precise compared to other techniques found in the literature[26],
where the root mean square error ranges from 0.2mm to 0.6mm with similar
scan resolutions. The performance of the algorithm was compared to another
vector-based algorithm by Conrea et al.[11]. The computation of the poten-
tial field as the first step of that algorithm would have taken several months.
The presented algorithm requires only little more than an hour for the entire
analysis of the data set.

The described algorithm works well with other types of data sets. The first
example is a pure cylindrical shaped data set. The cylinder is perfectly round;
hence, the algorithm should find a straight line as the curve-skeleton. As can
be seen in figure 1.4(a), the algorithm generates the correct curve-skeleton
for this data set exactly. The tetrahedrization of a small slice shown on the
right illustrates the principles of the algorithm. There are two large triangles
cutting through the cylinder with which a point on the center line is identified
marked with a dot at the center of the image.

(a) (b) (c)

Fig. 1.4. Cylinder data set visualized as a volume rendered image (a) and the ex-
tracted curve-skeleton of the same data set (center); to enhance visibility in the
paper the thickness of the lines and points within the image is increased. To illus-
trate the algorithm, the tetrahedrization within a small slice is shown as well (b).
Monster data set visualized as a volume rendered image (left) and the extracted
curve-skeleton of the same data set (right); to enhance visibility in the paper the
thickness of the lines and points within the image is increased.

Figure 1.4(c) depicts the results of the next example, the monster data
set. Again, both the volume rendered image and the curve-skeleton including
the point describing the object’s boundary are shown. This example shows
that the algorithm works well even with non-tubular objects. More examples
can be found on the color plates.

1.5 Conclusions and Future Work

In this paper, an algorithm for extracting a curve-skeleton from data sets
given as point clouds or volumetric data sets was presented. The described
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algorithm is based on a topological analysis of a vector field derived from the
configuration of the point set describing the object’s boundary contained in
the data set. Due to the fact that it is no longer necessary to compute the vec-
tor field on a multitude of points but instead only for points on the object’s
boundary the described algorithm is significantly faster while still preserv-
ing a high accuracy of the extracted curve-skeleton. It took the algorithm a
few seconds to extract the curve-skeleton for the smaller data sets. For the
porcine heart data set, the algorithm needed a little more than an hour to
determine the curve-skeleton. This is comparably fast, considering that in our
tests Cornea’s et al. [12] algorithm would have required several months to
compute the potential field alone.

It is planned to use the described algorithm for deriving precise quantita-
tive measurements from CT scanned specimens, such as vascular structures.
In order to be able to measure vessel lengths, vessel diameters, and bifur-
cation angles an accurate representation of the center lines of the vessels is
required. These center lines can be determined by the described algorithm for
extracting curve-skeletons applied to the volumetric data set generated by a
CT scanner.
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Fig. 1.5. Volume rendering (with shading enabled) of a previously perfused porcine
heart which was scanned using a standard hospital CT scanner (left) and curve-
skeleton of the porcine heart data set using the described algorithm; to enhance
visibility in the paper the thickness of the lines and points within the image is
increased (right).

Fig. 1.6. Sub-section of the porcine heart data set showing the extracted center
line (left) and the underlying tetrahedrization used for identifying the center line
(right).

Fig. 1.7. Comparison of computed vessel radii (red) and manual optical measure-
ments (green) for a typical specimen.
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Fig. 1.8. Cylinder data set visualized as a volume rendered image (left) and the
extracted curve-skeleton of the same data set (right); to enhance visibility in the
paper the thickness of the lines and points within the image is increased.

Fig. 1.9. Cow data set visualized as a volume rendered image (left) and the ex-
tracted curve-skeleton of the same data set (right); to enhance visibility in the paper
the thickness of the lines and points within the image is increased.

Fig. 1.10. Monster data set visualized as a volume rendered image (left) and the
extracted curve-skeleton of the same data set (right); to enhance visibility in the
paper the thickness of the lines and points within the image is increased.

Fig. 1.11. Mushroom data set visualized as a volume rendered image (left) and the
extracted curve-skeleton of the same data set (right); to enhance visibility in the
paper the thickness of the lines and points within the image is increased.


