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Abstract
Modeling complex organs, such as the human heart, requires a detailed understanding of the geometric
and mechanical properties of that organ. Similarly, the model is only as accurate as the precision of the
underlying properties allow. Hence, it is of great importance that accurate measurements of the geometric
configuration are available. This paper describes the different steps that are necessary for creating and
visualizing such a vascular model, ranging from determining a basic geometric model, gathering statistical
data necessary to extend an existing model up to the visualization of the resulting large-scale vascular
models.
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1 Introduction

In order to precisely model a complex organ, such as the human heart, the organ’s mechanical and
physiological properties need to be fully understood. This includes the analysis of, for example, the
geometric configuration of the myocardium and its supporting vasculature as well as the structural
configuration of the vessels themselves. Therefore, this paper describes methodologies that help
analyze such properties and provides some answers to the visual analytics challenges this ongoing
research is facing.

In order to extract morphometric data from a volumetric data set that resembles a scan of a
coronary system with the arteries highlighted using some form of contrast agent, the center lines
of the individual vessel segments need to be identified resulting in a curve-skeleton describing the
medial axis of the vessels. This then allows the software to compute the vessel radii as the distance
between the center lines and the vessel boundary. Similarly, the length of a vessel segment can be
computed as the length of the center lines, as well as bifurcation angles as the different angles formed
by the center lines at a bifurcation. Obviously, it is quite important that both the boundary and the
center lines are determined as accurately as possible. The method used in this paper computes both at
a sub-voxel level to achieve a very high precision.

Curve-skeletons represent the very basic features of an object. They describe a thinned version of
the object represented as some type of stick model resulting in the center-lines of the object. Therefore,
the use of curve-skeletons can prove useful for applications, such as animation [46] or flight planning
for virtual colonoscopy [19]. Similarly, accurate curve-skeleton methods can be used for extracting
quantitative measurements from computed tomography (CT) scanned vascular structures. Here, the
curve-skeleton describes the center lines of the vessels. These can then be used to measure vessel
radius, vessel lengths, and angles between vessels within the volumetric data set retrieved by using
the CT scanner. In order to derive these measurements from the volumetric data set, an accurate
extraction method for curve-skeletons is desirable. For example, thinning-based techniques that work
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in the voxel space of the volumetric data set tend to generate jagged lines which are in no way suitable
for determining angles between vessels. Similarly, inaccuracies can occur when computing the radii
of the vessels. Hence, an approach that only uses the volumetric data set in order to identify the
boundary surface of the contained object is more promising.

The algorithm used in this paper is exactly of this type. It is capable of extracting the boundary
surface of an object that is defined by a volumetric data set at sub-voxel level. For this, it determines
the location of the maximal gradient within the volumetric data set similar to Canny’s [8] maxima-
suppression technique but extended to three dimensions. Since the algorithm only relies on points
extracted from the volumetric data set but not on its underlying structured grid, it can also be applied
to objects defined by a point set without any restrictions.

Techniques used for computing the topological graph of a vector field are applied to determine the
curve-skeleton. First, for all points on the object’s boundary vectors are computed that are orthogonal
to the boundary surface. There are different options for computing these vectors. They either can be
derived by determining the normal vector of a plane that is defined by a least-square fit of the point and
its neighbors. Or – in case of the object being defined by a volumetric data set – the image gradients
determined in the previous step can be used. In both cases, the normal vectors can be determined in
such a way that they are facing inwards with respect to the object. The entire vector field can then be
determined by computing a tetrahedrization of the entire point cloud and then linearly interpolating
within the tetrahedra. In order to ensure that only the curve-skeleton inside the object is extracted, all
tetrahedra that are located outside the object are removed based on the normal vectors.

A topological analysis of the vector field within the faces of every tetrahedron yields points on
the curve-skeleton. By following the topology of the tetrahedrization, points on the curve-skeleton
within neighboring tetrahedra can be connected resulting in the entire curve-skeleton. Based on this
curve-skeleton, vessel radii are computed at a very high accuracy. Similarly, bifurcation angles can
be computed and statistically analyzed. This information, i.e. statistical information about the vessel
lengths, vessel radii, and bifurcation angles for vessels of different sizes, can then be used to grow
additional vessels onto an existing model resulting in a large-scale model of the vasculature that
includes vessels down to the capillary level.

Rendering such a large-scale model is quite challenging for currently available computing hard-
ware since commodity graphics cards are presently not able to display this amount of information
interactively. For the complete coronary arterial model, traditional rendering algorithms require the
total of 6 GB of geometric information to be transferred from main memory to the graphics card,
which presents a limit for interactive rendering. Furthermore, most desktop computers are not capable
of handling this amount of data due to insufficient main memory. Hence, the size of such a large-scale
anatomical model is prohibitive for rendering on desktop computers without employing out-of-core
techniques or more sophisticated rendering algorithms. Occlusion culling techniques are usually
capable of achieving better performance. However, when applied to tree-shaped data sets only little
occlusion occurs which in turn requires the removal of partly visible areas of the data set in order to
achieve an increase in rendering performance [49]. In addition, medical personnel and researchers
tend to prefer to see the entire data set without anything being removed in fear of missing essential
information. Hence, the visualization methods in this paper refrained from applying any type of
geometry reduction methods but improved on the rendering method itself instead.

The objective of this paper is to outline methods that allow for the analysis, modeling, and
visualization of cardiovascular structures. This includes methodologies that are capable of extracting
quantitative morphometric measurements from scans of cardiovascular data sets. These statistical
data can then be used to generate a large-scale vascular model with vessels from the most proximal
level down to the capillaries. The enormous amount of vessel segments included in such a model
requires novel visualization methods in order to achieve interactive rendering of these data sets. The
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proposed approach computes the necessary geometry that is required for visualizing the data set
on-the-fly and utilizes all computational resources available on today’s desktop computers, i.e. all
cores of the CPU and the GPU at the same time, thereby achieving maximal performance of the
visualization algorithm. The rendering algorithm is especially optimized for rendering large-scale
tree-shaped data sets and the computation of all necessary geometry in parallel on the CPU assisted
by the GPU. The techniques described in this paper can easily be applied to data extracted from any
type of tree-like structure.

The following section discusses work related to the topics described in this paper. A description
of the algorithms can be found in section 3. Section 5 discusses the performance of the algorithm
applied to the large-scale vascular data set, followed by conclusions and future work.

2 Related Work

Several approaches for extracting curve-skeletons or medial axes can be found in the literature. A
very good overview of available techniques can be found in the paper by Cornea et al. [9].

Some methods start with all voxels of a volumetric data set and use a thinning technique to shrink
down the object to a single line. Directional thinning approaches use a specific order in which voxels
are removed. For example, directions, such as up or down, are used to define this order and conditions
are used to identify endpoints [2, 7, 17, 22, 24, 31, 32, 37, 45]. Since these methods are sensitive with
respect to the order in which the voxels are removed the resulting curve-skeleton may not be perfectly
centered. Non-directional methods [5, 42] or fully parallel approaches [12, 25, 27] do not suffer from
this disadvantage. Ideally, the topology of the object should be observed. Such an approach was
proposed by Lobregt et al. [23] which is the basic technique used in commercial software systems,
such as AnalyzeT M developed by the Mayo Clinic. The disadvantage of this approach is that it tends
to produce jagged lines which do not allow accurate measurements of angles between parts of the
object, such as individual vessels of a vascular structure. Other approaches [43] classify the voxels in
different groups, such as edge, inner, curve, or junction and re-classify after removal of a voxel. A
similar algorithm is proposed by Palagyi et al. [31]. The disadvantage of thinning algorithms is that
they can only be applied to volumetric data sets due to the nature of these algorithms.

To avoid this disadvantage, other approaches deploy the distance transform [16] or distance field in
order to obtain a curve-skeleton. For each point inside the object, the smallest distance to the boundary
surface is determined. For this, the Euclidean metric or the <3,4,5> metric [4] can be used. Also,
fast marching methods [39, 44] can be deployed to compute the distance field. Voxels representing
the center lines of the object are identified by finding ridges in the distance field. The resulting
candidates must then be pruned first. The resulting values are then connected using a path connection
or minimum span tree algorithm [41, 47, 52]. Methods used to identify points on the ridges include
distance thinning [10, 14, 15, 34], divergence computing [6], gradient searching [3], thresholding the
bisector angle [26], geodesic front propagation [33], or shrinking the surface along the gradient of
the distance field [38]. The distance field can also be combined with a distance-from-source field
to compute a skeleton [53]. Based on an anisotropic diffusion applied to the image gradients, Yu et
al [51] extract skeletons from 2D images.

Techniques based on Voronoi diagrams [1, 11] define a medial axis using the Voronoi points.
Since this approach usually does not result in a single line but rather a surface shaped object, the
points need to be clustered and connected in order to obtain a curve-skeleton. Voronoi-based methods
can be applied to volumetric data sets as well as point sets. Due to the fact that clustering of the
resulting points is required, these approaches can lack some accuracy.

The center lines in combination with the vessel radii computed at the center points allow for a
geometric reconstruction of the vasculature. Various techniques for visualizing vascular structures
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can be found in the literature. Hahn et al. [18] employ geometrical primitives, such as truncated
cones, to visualize vessels inside the human liver. Masutani et al. [28] used cylinders aligned to the
vessel skeleton to visualize the vasculature. Different radii at branchings resulted in discontinuities
when using this method. Felkel et al. [13] reconstructed liver vessels from center line and radius
information to supply an augmented reality tool for surgery. Puig et al. [35] developed a system for
exploring cerebral blood vessels using a symbolic model with a focus on geometric continuity and on
realistic shading. Oeltze et al. [29, 30] use convolution surfaces to obtain a smoother representation
of blood vessels extracted from CT or MR data. Ritter et al. [36] extended on illustrative rendering
techniques to accentuate spatial depth by use of GPU-accelerated shadow-like depth indicators. The
method was applied to vascular structures to better distinguish vessels in the front from vessels further
in the back. Stoll et al. [40] introduced stylized primitives which utilize the GPU to render cylindrical
objects using a single quadrilateral. The approach was used for fast rendering of streamlines in vector
field data sets.

3 Methodology

As indicated in the Physiome Project [20], modeling the human body requires its analysis at various
levels ranging from the genomic over to the tissue level and organ level up to the human body itself.
Similarly, modeling the human heart requires a detailed understanding of the vascular structure and
the individual vessels of which the structure composed.

A previously developed software package extracts morphometric data from a volumetric image in
several steps. Although a brief summary of the algorithm is given here, a detailed description can be
found in the original publication [48]. The algorithm first segments the tubular objects within the
volumetric image based on the image gradients. In order to get a more accurate representation of the
boundary, the points resulting from the segmentation step are moved along the gradient direction in
such a way that they are located at the maximal gradient. This provides a more precise and smoother
representation of the boundary compared to using the original voxel locations. Then, a vector field is
computed in such a way that all vectors are pointing inwards to the center of the tubular object. In
the simplest case, the image gradients can be used at the boundary. Using a tri-linear interpolation,
the vector field can be computed after a tetrahedrization of all the boundary points is determined.
Finally, the points on the center lines are computed using a topological analysis of the vector field
within the cross sectional area of the tubular objects and connected based on the topology of the
tetrahedrization. This then results in a precise representation of the center lines of all tubular objects
within the volumetric image. At the same time, the algorithm computes the radii of the tubular shapes
along with the center lines as the distance between center line at boundary.

The algorithm has a proven accuracy with smaller error than most other methods. For the
validation of the algorithm, vessel radii were computed for the main trunk of the arterial branches of
a series of five porcine heart data sets as the distance between the center line and the vessel boundary
and then compared to manual optical measurements. The agreement between the measurements is
very good, with an error of 0.06mm (scan resolution was 0.6mm×0.6mm×1.0mm), which underlines
the accuracy of the center lines. For the three major branches (LAD, LCx, and RCA) of the five
porcine hearts, the root mean square error between the two measurements is 0.16mm and the average
deviation is 0.13mm.

Based on these accurate morphpometric data, the vascular geometry can be reconstructed. The
morphometric data extracted from the volumetric data set provides vessel segments identified as
line strips defined by the center lines of the vessels with radii measurements at both ends of each
line segment. Conic cylinders can then be computed that represent each vessel segment. Since two
consecutive line segments may not have the exact same direction, the end caps of the conic cylinders
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Figure 1 Vasculature of a pig heart: volume rendering (a) and geometric reconstruction (b) of the same
heart.

Figure 2 Definition of bifurcation angles.

are rotated in such a way that they describe half the angle between the line segments. This way, a
smooth transition between segments can be created that avoids gaps at the transition. By computing
such a conic cylinder for every vessel segment that was extracted from the volumetric data set, a
geometric reconstruction of the vasculature is achieved. Figure 1 depicts such a reconstruction and
compares it to a volume rendering of the exact same volumetric data set.

Using the above algorithm, the arterial center lines were determined for seven porcine hearts and
for all vessels detected by the software. Since the accuracy for vessels smaller than the scan resolution
is questionable as indicated by our previous study, vessels with a diameter of less than 1mm were not
included in the analysis. Based on these center lines of the vessel segments, bifurcation angles were
measured as defined in Figure 2. The two child segments define a plane. The angle between the two
children within that plane describes the in-plane angle. The out-of-plane angle is formed between the
parent segment and the plane defined by the two child segments. The main angle refers to the angle
between the parent and the larger child segment while the secondary angle is determined by the angle
between the parent and the smaller child segment.

Due to the fact that the first segment of a center line merely represents the connection of the vessel
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Figure 3 Sample bifurcation extracted from the volumetric data.

branches but not necessarily the direction of the daughter vessel due to possible curvature, more than
just the first segment were included in the calculation of the bifurcation angle (Figure 3). The first
center line segment usually only leads out of the main vessel formed by the parent and the larger
child. Using this segment alone would result in erroneous bifurcation angles. Hence, the center line
segments starting with the first segment after the bifurcation until the length of the daughter segment
reaches three times the radius of the parent vessel were considered. The vectors representing the
center line segments identified in such a way were then averaged and weighed by the length of each
vector to determine a representative for the orientation of the daughter vessels. These were used for
the computation of the bifurcation angles as described before.

For the statistical analysis, the bifurcations were grouped with respect to the order of the respective
vessel segments. These groups were defined by the diameter of the vessels thereby associating a
range of diameter values to a specific order. The relation between vessel diameters and orders are
shown in Figure 4 for LAD, LCx, and RCA. The bifurcations were then classified based on the order
of the parent and daughter vessels. Bifurcations between vessel orders ranging from 9 to 11 for LAD
and RCA, and 9 and 10 for LCx were considered since vessels of that specific size can be extracted
reliably from CT scanned imagery with a resolution of 1mm. Average angles and standard deviation
within each of these groups were computed for each of the major coronary arterial branches.

Figures 5 through 8 list the statistical summary of the secondary angles and out-of-plane angles
in matrix form according to the order number of the parent vessel segment (vertical axis) and the
daughter vessel segment (horizontal axis). Each entry lists the average angle within that group and
the standard deviation. The tables confirm assumptions typically made for vascular structures. The
smaller daughter vessel usually forks off at a relatively larger angle whereas the larger vessel continues
the vessel segment in a rather straight fashion. The low out-of-plane angles confirm that bifurcations
typically are relatively planar. Despite the important fact of confirming observations and assumptions
often found in the literature, it is often difficult to analyze the values for specific bifurcations. A
focus+context-oriented visualization can help in this case. By annotating a visualization of the
vascular geometry with textual information representing the angular values, it is much easier to
correlate the values with the geometry of the vascular structure making an analysis significantly less
cumbersome. Figure 9 shows an example for such a visualization. The user can zoom in on specific
bifurcations and check the attached angular values interactively.

The size of the vessel segments that can be extracted from the volumetric data depends on the
resolution of the scanning device used. Typically, capillary vessels have a diameter of 6−7µm. This
is significantly smaller than the resolution of typical scanners. In order to derive a detailed model
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range
RCA Order low high

9 552 955
10 955.1 2,319
11 2,319.1 3,606

range
LAD Order low high

9 554 986
10 986.1 2,189
11 2,189.1 3,830

range
LCx Order low high

9 649 1,782
10 1782.1 2,940

Figure 4 Relation between order numbers and vessel diameter.

RCA order 9 order 10 order 11
order 9 29.66±13.93 19.79±11.17 12.10±0.64
order 10 24.72±20.69 15.73±7.79
order 11 17.31±1.06

LAD order 9 order 10 order 11
order 9 25.36±15.88 23.26±13.33 15.41±9.48
order 10 26.94±20.66 23.28±17.93
order 11 35.00±20.65

LCx order 8 order 9 order 10
order 9 20.05±15.00 17.35±16.95
rder 10 24.74±30.33

Figure 5 Main bifurcation angles.

RCA order 9 order 10 order 11
order 9 73.13±28.13 56.99±26.18 60.71±13.14
order 10 63.87±34.63 57.55±22.56
order 11 36.31±21.93

LAD order 9 order 10 order 11
order 9 66.19±31.75 70.87±28.62 64.89±19.56
order 10 66.85±32.95 65.02±26.20
order 11 51.36±6.31

LCx order 8 order 9 order 11
order 9 65.75±31.95 69.46±19.11
order 10 86.75±60.92

Figure 6 Secondary bifurcation angles.
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RCA order 9 order 10 order 11
order 9 89.46±19.12 65.18±27.89 70.35±11.46
order 10 68.80±35.15 62.30±20.31
order 11 38.79±43.47

LAD order 9 order 10 order 11
order 9 66.37±31.68 76.55±32.03 69.25±16.86
order 10 68.57±33.86 75.29±31.87
order 11 25.49±26.03

LCx order 8 order 9 order 10
order 9 71.99±32.03 64.39±26.57
order 10 74.08±48.50

Figure 7 In-plane bifurcation angles.

RCA order 9 order 10 order 11
order 9 12.81±11.26 10.97±10.01 5.82±3.95
order 10 11.47±10.62 7.02±4.05
order 11 9.32±8.65

LAD order 9 order 10 order 11
order 9 16.55±13.52 12.26±8.21 10.78±9.74
order 10 12.92±13.46 12.09±10.11
order 11 21.27±1.24

LCx order 8 order 9 order 10
order 9 9.58±10.13 6.74±7.01
order 10 6.61±4.04

Figure 8 Out-of-plane bifurcation angles.

of the vasculature that includes vessels on the capillary level, the vasculature extracted from the
volumetric data can be extended based on statistical properties of the vasculature. Recently, Kaimovitz
et al. [21] developed a three-dimensional (3-D) geometric model of the entire coronary arterial tree
(right coronary artery, RCA; left anterior descending artery, LAD; and left circumflex, LCx arterial
tree). The model is purely based on morphometric data as extracted using the methodology as
described previously, i.e. statistical information of vessel length, vessel diameter, and bifurcation
angles. The model spans the entire coronary arterial tree down to the capillary vessels in a prolate
spheroid model of the heart and encompasses about 11 million segments. The 3-D tree structure was
reconstructed initially in rectangular slab geometry by means of global geometrical optimization
using a parallel Simulated Annealing (SA) algorithm. The SA optimization was subject to a global
boundary avoidance constraint and local constraints at bifurcations prescribed by previously measured
data on branching asymmetry in the coronary arterial tree. Subsequently, the reconstructed tree was
mapped onto the prolate spheroidal geometry of the heart. The transformation was made through least
squares minimization of the deformation in segment lengths as well as their angular characteristics.

Due to the high number of vessel segments, the geometric data that needs to be generated for
creating a high-quality visualization of this data set is quite substantial. When discretizing the end caps
of the conic cylinders to represent each vessel segments with 8 vertices, the overall geometric data
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Figure 9 Focus+context visualization of vascular geometry and bifurcation angles.

amounts to 6 GBs of data. Since this amount of data exceeds the amount of memory typically available
in desktop computers, out-of-core rendering approaches are required to visualize the data [50]. The
entire geometric information is stored in a file and then accessed using memory-mapping so that the
operating system automatically swaps chunks of the data set in and out as necessary. In addition to
the geometry, a pressure simulation can be performed based on the geometric configuration of the
vasculature. The resulting pressure data can then be used to color-code the vessels. Figure 10 shows
such an image where the vessel segments are colored from red (low pressure) to green (high pressure).

Even though the rendering is of very high-quality, the fact that out-of-core methods are required
results in rather slow rendering performance of about one minute per frame. This obviously is not
interactive. However, the center line information combined with the vessel radii as described by the
vascular model requires comparably less memory and fits into most desktop computer’s main memory.
Hence, a visualization technique that is solely based on these center lines and radii only would not
require out-of-core techniques and therefore could be able to achieve faster rendering times.

The rendering technique described in this paper follows a similar approach than Stoll et al. [40]
where the GPU is used to make lines appear cylindrical for rendering streamlines. In this paper, this
idea is extended to allow for more general conic cylinders with different radii at each end since this is
a requirement for rendering the vessel segments. In addition, the rendering technique is optimized
for the purpose of rendering large-scale tree-shaped data sets and parallelized to run on the multiple
cores of a CPU at the same time.

In this method, each vessel segment is represented only by a single quadrilateral. This approach
provides two advantages. First, the quadrilateral can be solely computed based on the center line
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Figure 10 High-quality rendering of the arterial tree of a pig heart including vessels from the most-proximal
level down to the capillaries.

Figure 11 Computation of vessel directions (red arrows attached to its center point) based on the center
lines of the vessels (dashed).

and radii information describing the vessel segments. Second, the rendering algorithm draws only
four vertices per vessel segment compared to at least 18 vertices for the traditional approach. A
fragment program can be used to make the quadrilateral appear like a cylindrical object. Of course,
this rendering technique requires that the quadrilateral is always parallel to the projection plane in
order to be completely visible. Only then a cylindrical appearance can be achieved. Consequently,
the quadrilateral needs to be recomputed for every frame if the view has changed.

In a pre-computational step, the vessel directions at each center point are computed as the average
of the direction of vessel segment ending at that center point and the direction of the vessel segment
starting at that center point. In case of bifurcations, there may be more than one vessel segment
starting at that center point. Consequently there are more than one direction available as well which
then are included in the computation of the average direction. Figure 11 illustrates two examples. The
resulting vessel direction is necessary to ensure a smooth transition between the vessel segments.

In order to compute the quadrilateral to represent a vessel segment, an offset vector is computed
for every center point in such a way that this offset vector is parallel to the projection plane and
orthogonal to the vessel direction at that center point. Figure 12 illustrates this procedure. Based on
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center line offset

offset

vessel direction

vessel direction

Figure 12 Computation of the quadrilateral representing a single vessel segment.

the offset vectors of two consecutive center points, four vertices can be computed by offsetting the
center point in positive and negative direction of the offset vector as described in figure 12. This then
results in the quadrilateral representing that vessel segment. Since neighboring quadrilaterals are
based on the same vessel direction and therefore on the same offset vector, a smooth transition from
one vessel segment to the next is guaranteed. Due to the fact that the offset vectors are parallel to the
projection plane, it is guaranteed that the quadrilateral itself is parallel to the projection plane as well.
This quadrilateral is then used as an approximation for the vessel segment.

Obviously, representing the vessel segment using a single quadrilateral works best when looking
at the segment from the side. When looking at the vessel segment’s cross-sectional area, it is
approximated as a single vertical line since only a single quadrilateral is used as a representation.
However, this is more obvious only for terminal vessels, i.e. vessel segments that represent leaves in
the vascular tree. For vessels with adjacent segments most of the resulting artifact will be covered
by that adjacent vessel segment. In addition, the percentage of vessels that are orthogonal to the
projection plane and where the cross-sectional area would be visible is very small among all 11
million vessel segments. It would be easy to test for those cases and draw a circular area instead of
a quadrilateral. However, this would require additional computation for the test and drawing more
vertices for approximating a circle compared to drawing a quadrilateral. The test would have to be
performed for every vessel segment. Considering the minimal artifact resulting from neglecting these
cases and the loss of performance from the additional testing, this was not implemented to achieve
the maximal performance possible.

In order to find the most efficient way of computing the quadrilaterals representing the vessel
segments, three different approaches were implemented and compared. The first one computes all
offset vectors for two consecutive center points individually. Hence, the offset vector for two con-
secutive quadrilaterals are computed twice. To avoid this double computation, two other approaches
were tested. The first one stored all offset vectors in memory. This resulted in a huge array of
offset vectors so that eventually the amount of available main memory was exceeded and the system
started swapping during the rendering. Consequently, the performance of the rendering algorithm
dropped. The second approach recursively traversed the vascular tree structure so that consecutive
quadrilaterals were computed right after each other. This allowed the system to reuse the offset vector
computed for the previous quadrilateral. However, the additional burden introduced by the recursion
slowed down the rendering compared to the direct approach. Even transforming the recursion into
a sequential approach using queues resulted in a slower performance. As a result it was found that
computing both offset vectors for each quadrilateral results in the best performance possible despite
the fact that some offset vectors are computed twice.

Rendering the vessel segments as quadrilaterals results in a rather flat appearance. In order to
achieve a more cylindrical effect, a fragment program can be used that uses darker colors at the edge
of the vessel, i.e. the sides of the quadrilateral that are not connected to other quadrilaterals. To
achieve this effect, texture coordinates can be assigned to the vertices of the quadrilateral. Based on
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void main (in float4 color : COLOR0,
in float2 texcoord : TEXCOORD0,
out float4 result : COLOR) {

result = color * (-(texcoord.y - 0.5) *
(texcoord.y - 0.5) + 1.0);

}

Figure 13 Fragment program for making a quadrilateral appear as a cylindrical object.

these texture coordinates, the fragment program can determine the local position of every fragment
with respect to the vessel segment and change the color for the fragment if the edge of the vessel
is approached. Figure 13 shows the Cg code of the fragment program used in this implementation.
The fragment program simply fades the color when approaching the edge of the vessel. A similar
effect could be achieved by using a simple texture. However, a fragment program has two advantages
over a texture. First, the fragment program is resolution independent and computes the color for each
fragment whereas a texture may produce aliasing artifacts. Second, the fragment program is color
independent. Hence, color coding could be used for the vessel segments which would be preserved
by the fragment program but overwritten by a texture.

Since CPU manufacturers nowadays often times provide more than just a single core, this
additional computational resource can be used by the current implementation as well by simply
adding a thread that computes quadrilaterals representing vessel segments on the CPU for very core.
To synchronize the threads, a queue was introduced which contains all vessel segments that are not
rendered yet. Then a separate thread is started which acquires the next vessel segments from the
queue and computes the quadrilaterals to represent these vessel segments. The resulting geometry
data is stored in another queue. This other queue is then processed by the main thread which renders
the quadrilaterals contained in that queue. On a dual-core processor, this then results in two parallel
processes which compute the necessary geometric data required for rendering the vascular data set.
As can be seen in the next section, the current implementation of the algorithm scales very well and
utilizes all computational resources available resulting in an increased rendering performance.

4 Performance

Figure 14 shows the resulting image of the performance rendering method based on a single quadri-
laterals for every vessel segment. As can be seen in the image, the rendering quality is still very good.
Every of the 11 million vessel segments is represented in this image.

The performance of the algorithms is very good as well. All measurements were performed on a
computer equipped with an Intel Core2 Duo E6850 running at 3.0 GHz with 2 GB of memory and
an NVidia Quadro FX3700 graphics card running Linux. A Western Digital Raptor WD740ADFD
spinning at 10,000 RPM was utilized as the permanent storage device. The original implementation
based on an out-of-core methodology requires over a minute (65 seconds on average) to render a
single frame due to the fact that the geometry needs to be loaded from disk all the time. Figure 15
shows a plot of the rendering frame rate over a period of time.

When using the improved rendering algorithm, the performance increases significantly. Since the
methodology no longer has to rely on the hard drive as the main storage medium, but instead can
store all the necessary information in main memory, a rendering frame rate of about 0.68 is achieved
which amounts to 1.5 seconds per frame on average. A plot of the frame rates over time is included in
Figure 16.

The algorithm scales very well as can be seen when adding a second thread to assist in the
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Figure 14 Performance rendering of the arterial tree of a pig heart.

computations necessary to compute all the quadrilaterals to represent the vessel segments. The
rendering performance doubles to 1.32 frames per second which is equivalent to 0.75 seconds per
frame which allows for an interactive investigation of the data set.

5 Conclusion and Future Work

This paper presented methodologies for extracting quantitative measurements from volumetric data
sets at a very high accuracy. These morphometric measurements can be used to reconstruct the
geometry of the vasculature resulting in an accurate visualization of the data. The measurements
extracted include vessel length, vessel radius, and bifurcation angles which can be used as a statistical
basis for growing additional vessels onto an existing vasculature. This way, large-scale vascular
models can be generated that include vessels from the most proximal level down to the capillaries.
Due to the vast amount of vessels included in such a data set, fast rendering methodologies are
required to handle this amount of information. As discussed in this paper, using a more suitable
rendering algorithm can result in an improvement of a factor of 43 in rendering performance over
traditional out-of-core approaches.

In the future, the geometric reconstruction will be used to perform detailed flow simulation within
the vessels to accurately analyze the flow properties within the vascular structure. Due to the high
accuracy of the extracted measurements, the information can be used for disease detection, such
as identification of areas of reduced flow. In addition, the extraction algorithm will be extended to
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Figure 15 Rendering performance of out-of-core method for the large-scale arterial tree of a pig heart.

0.666

0.668

0.67

0.672

0.674

0.676

0.678

0.68

0.682

1 14 27 40 53 66 79 92 105 118 131 144 157 170

frame

fr
am

e 
ra

te

Fig. 16. Rendering performance of performance method for the large-scale arterial tree of a pig
heart.
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identify individual fibers within volumetric data sets captured using optical coherence tomography
of vascular tissue. An analysis of the fiber structure will result in the determination of mechanical
properties of individual fibers to model the expansion of a fiber due to increased pressure induced by
the blood flow.
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