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Abstract

Aims: Accurate computed tomography (CT)-based reconstruction of coronary morphometry (diameters, length, bifurcation
angles) is important for construction of patient-specific models to aid diagnosis and therapy. The objective of this study is to
validate the accuracy of patient coronary artery lumen area obtained from CT images based on intravascular ultrasound
(IVUS).

Methods and Results: Morphometric data of 5 patient CT scans with 11 arteries from IVUS were reconstructed including the
lumen cross sectional area (CSA), diameter and length. The volumetric data from CT images were analyzed at sub-pixel
accuracy to obtain accurate vessel center lines and CSA. A new center line extraction approach was used where an initial
estimated skeleton in discrete value was obtained using a traditional thinning algorithm. The CSA was determined directly
without any circular shape assumptions to provide accurate reconstruction of stenosis. The root-mean-square error (RMSE)
for CSA and diameter were 16.2% and 9.5% respectively.

Conclusions: The image segmentation and CSA extraction algorithm for reconstruction of coronary arteries proved to be
accurate for determination of vessel lumen area. This approach provides fundamental morphometric data for patient-
specific models to diagnose and treat coronary artery disease.
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Introduction

With the enormous advances in computational science and

medical imaging technologies in the past decade, patient-specific

models are becoming more common to aid in diagnosis and

therapeutics. Computational modeling of coronary artery disease

requires accurate measurement of cross-sectional area (CSA) and

length of the 3D vessels. Accordingly, the combination of imaging

(e.g., computed tomography, CT) and computational simulations

have been used to investigate the role of biomechanical factors in

vascular disease [1–5] and vascular surgeries [6–8]. Computa-

tional models have also been used for device simulations [9–11].

These developments are at an early stage and idealized arterial

models are typically used (e.g., straight tubes). The simulations

have largely not been coupled with patient-specific, image-based

vascular models. This is an important limitation that requires an

accurate and reproducible algorithm to faithfully reconstruct the

coronary anatomy from medical images.

Since image segmentation can be a tedious task to reconstruct

the 3D geometric structure, much effort in CT image analysis has

been devoted to develop a fully automatic or semi-automatic

segmentation approaches. Thus, labor saving methodology that

retains accuracy is a major research topic [12–14]. In addition to

development of automatic methods for cardiovascular image

segmentation, the validation of the segmentation accuracy is

important for image analysis and computational modeling to

ensure the faithful reconstruction of the anatomical structure

which in turn dictates the accuracy of hemodynamic predictions.

In vitro validation of CT image segmentation using microscopy

has been performed by our group and the agreement error was

found to be ,10% for lumen diameter [15]. Voros S et al. recently

reported a validation study of coronary CT anatomy with IVUS

[16] with errors of 21% in lumen area reconstructed from CT

images and overestimated diameter stenosis by 39%. Clearly, these

errors are unacceptably large and would propagate significant

errors in hemodynamic and mechanical parameters in model

simulations.

Here, we used IVUS to validate CT image segmentation for

extraction of coronary morphometry with focus on accuracy of

lumen area for normal and stenotic vessels. A new center line

extraction method was proposed to improve the geometric

accuracy at sub-pixel level. Based on CT images, the center line

was extracted and found to accurately reproduce the vessel axis.

Subsequent to centerline extraction, the lumen CSA of coronary

arteries in normal and stenotic vessels was validated by IVUS.
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Methods

Image Data of Coronary Arteries
The clinical study protocol was approved by the ethics

committee of Seoul National University Hospital and all

participants gave written consent to participate in this study. Five

patients with coronary lesions in 11 major coronary arteries (left

anterior descending artery, LAD; right coronary artery RCA; and

left circumflex artery, LCX) were scanned with CT. The image

segmentation results from CT imagery were validated by IVUS

(‘‘gold standard’’). The patients underwent 64-slice CCTA during

a routine health check. IVUS and angiography were performed in

a standard fashion. IVUS analysis were performed by an

independent core laboratory at Seoul National University

Cardiovascular Center [17]. The CT and IVUS data were saved

as DICOM while angiography data were saved using the JPEG

format. The CT images provided the images for 3D structure

reconstruction and the IVUS data provided the 2D cross sections

for each point along the center line. Angiography was used to

identify landmarks to overlap the CT and IVUS data.

The entire 3D geometric reconstruction from CT image

segmentation is shown in Figure 1a. The results of IVUS from

one LAD were represented in the form of individual images as

seen in Figures 1b, 1c, 1d. After the lumen region was outlined

using a polygon curve, the geometric information of the CSA was

extracted and the length was recorded from the same point of

interest. The CSA was used to validate the reconstruction of CT

image analysis. One or two angiographic images were used for

each artery to ensure identification of the same points of interest in

CT and IVUS. In this investigation, angiography in specific

viewpoints was only used to provide 3D spatial structure reference

for IVUS. The corresponding 3D CSA locations are demonstrated

in Figures 1e, 1f, 1g.

CT Image Analysis
Image analysis was composed of several image processing steps:

image segmentation, 3D reconstruction, center line extraction and

CSA computation. The CT image segmentation was based on

local features. The initial automatic processing was complemented

by manual modification. By localization at several slices, some seed

points were inputted manually or by computer processing. As high

intensity levels inside the vessels are stable near the skeleton region,

initial seeds were located with a higher threshold, so that the

skeleton region can be extracted. Region growing was then used to

refine the object region based on the local histogram which was

computed from pixels within a sphere. This spherical neighbor-

hood region was centered on initial seeds. By dividing the

histogram bins into target and non-target objects, feature-centers

were formed and used in a further feature-clustering algorithm. In

some cases, the image quality was not satisfactory with automatic

processing, such that manual intervention was used to remove

some adhered regions in the vessels.

Data from CT images contain intensity values which are

measured in Hounsfield Units (HU), which are a linear

transformation of the attenuation coefficient measurement in

which the radiodensity of distilled water at standard pressure and

temperature maps to a HU of zero whereas the radiodensity of air

at standard pressure and temperature amounts to 21000 HU.

The vessels were first segmented from other background tissue.

Calcific stenosis has intensity values typically .700 HU, which is

relatively high as compared to the radiodensity of a normal vessel.

A deconvolution method was used as a preprocessing procedure to

overcome the point diffusion effect between the normal vessel and

stenosis. Further classification steps, such as simple threshold and

local maximal gradient, were applied for these regions to identify a

stenosis. The 3D surface mesh of the vessel was reconstructed from

segmentation result by classical Marching Cubes technique [18].

After the mesh surface was reconstructed, curvature smoothing

was used to further smooth the lumen surface mesh. The center

line was first computed by image thinning and refined by Bézier

interpolation to obtain the center line accurately at a sub-voxel

level. A flow chart of image processing steps is outlined in

Figure 2. A more detailed description can be found in Appendix

S1.

Results

In the five patients imaged, 11 vessels and over 1,300 IVUS

cross-sectional images were sampled, and over 400 originally

thinned CT points were interpolated to yield matching points

between IVUS and CT. Although the data were extracted from

only five patients, multiple positions were sampled from each

patient to provide 1,314 data for comparison between CT and

IVUS. Hence, the sample size was sufficiently powered for

statistical analysis.

Figure 1. a) Example of CT image segmentation and the 3D geometric reconstruction of one LAD. b) IVUS example from one frame of
the LAD artery. Lumen region is marked in polygon. c) A frame of IVUS. d) A Third frame. e) The corresponding CSA location to IVUS frame in
Figure 1b. f) A second CSA. g) A Third CSA.
doi:10.1371/journal.pone.0086949.g001
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An example of lumen CSA is depicted in Figure 3 where a

segment of lumen with crescent shape is shown. As the

computation of CSA is independent of the actual shape of vessel,

it is suitable for both circular and non-circular shape lumen. To

obtain more reliable lumen geometry, the removal of CT

blooming artifact is necessary. In Figure 4b, the deconvolution

result is shown by a 2D slice image and Figure 4c is the result of

bilateral smoothing which provides more accurate edge feature for

image segmentation.

In Figure 5a, a comparison between CT and IVUS lumen

area from a representative LAD is shown. The examples of IVUS

data are shown in Table 1. Figure 5b shows the percent error

for each point which is computed as (AIVUS2ACT)/AIVUS*100.

The average percent error from all LAD data was 11.2%.

Correspondingly, the root-mean-square error (RMSE) normalized

to mean value was 13.9%. As the CSA in the stenosis segment may

have a non-circular shape, the diameter was used as simple

measure and computed from an inscribed circle fitted in the CSA.

For the diameter, the percent of average error was 7.9%, with a

RMSE of 2.5%. In Figure 5c, the LCX CSA is compared where

the average percent error was 8.3% and normalized RMSE value

was 11.2%. In Figure 5e, the RCA CSA has a 7.9% average

error.

The validation data from all 11 vessels are summarized in

Figures 6a and 6b. Figure 6a that shows the identity plot of

diameter comparison between IVUS data CT data. The least

square fit is given by y = 0.97x+0.057, the RMSE normalized to

mean is 9.5%. For CSA comparison in Figure 6b,

y = 0.95x+0.23, and the RMSE normalized to mean is 16.2%.

Discussion

We developed a semi-automatic CT-based segmentation

algorithm that provides accurate center line reconstruction for

CSA data of coronary arteries including stenotic lesions (Figures 5
and 6) as compared with IVUS in patients (Figure 1 and

Table 1). The implications and limitations of the methodology

are discussed below.

The angiogram has long been considered the ‘‘gold standard’’

for imaging of coronary arteries due to its excellent resolution.

Reconstruction of 3-D images requires at least 2 orthogonal

projection images [19,20]. Jung et al. [1] used cross-sections to

generate realistic geometry as coronary arteries have varying cross-

sections along the vessel axis. One limitation of angiogram,

however, is that it only allows visualization of the vessel lumen with

no information on vessel wall and plaque structure. Ambrose et al.

have shown that lipid rich vulnerable plaques are typically not

significantly stenotic and often cannot be detected by angiogram

[21,22,20]. For that reason, IVUS has become increasingly

popular [23]. The use of angiogram and IVUS has often been

combined to produce ANGUS (ANGiogram-IVUS) imaging

[24,25], which provides both an overall view of the vascular

lumen and detailed wall structure. This combination along with

blood flow measurements can further provide assessment of

endothelial shear stress, an important factor in the atherosclerosis

process.

Although diameter is one of the morphometric measurements

typically considered, the assumption of a circular shape of the

vessel is not accurate in diseased arteries. Instead, CSA is a better

suited measure which is not affected by assumed shape or the

severity of stenosis. The detection of lumen stenosis with non-

circular geometry is one of the advantages of the present

approach. As depicted in Figure 3, the center line is first

extracted by morphological thinning which ensures the center line

to be inside the vessel and independent of the non-circular shape

of lumen area. As the plane is based on the center line, this

intersection plane is certain to intersect with the vessel and the

accuracy is not affected by the actual vessel shape. For the series of

Figure 2. A schematic flow chart for the solution algorithm.
doi:10.1371/journal.pone.0086949.g002

Figure 3. A segment of crescent shape lumen is extracted from
a vessel. The CSAs are magnified as solid lines on the right
side.
doi:10.1371/journal.pone.0086949.g003
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planes, the cross-section where the center point deviates can be

adjusted by changing the plane’s normal direction. Planes with

deviated orientation can be detected by comparing the distance to

other planes and adjusted if needed by resampling between

neighboring planes.

Hence, we focused on direct validation of CSA in this study and

found the error to be ,20% (,10% error in diameter; Figures 5
and 6) as compared to the significantly larger error reported in

Voros et al. [16]. In Voros et al’s study, CT image segmentation

and lumen area extraction were based on curved multi-planar

reformation (cMPR) methods. In this investigation, 3D informa-

tion of all branches is obtained, the vessels were segmented directly

in original image slices and converted into surface mesh. The

filtering on both image and geometry domain can improve the

smoothness.

Given the potential artifacts resulting from the optical diffusion

function, deconvolution methods are developed to separate the

degraded boundary features from stenosis and normal vessels.

Wiener Filters proved to be an efficient deblurring approach [26].

While high-frequency features of stenosis are improved by

deconvolution, the low-density feature of surrounding tissue will

be affected by noise and ring artifacts. To compensate, histogram-

based selective deblurring is applied to restore high quality image

by combining both original and deconvoluted images [27,28]. But

intensity histograms are based on the selection of a local region

and the threshold from the local gray scale is still depended on

various constitution of the surrounding tissue. In some cases, peaks

and valleys in the histogram from surrounding tissues do not

always provide obvious clues as to setting a threshold. In CT

reconstruction, the projection of scanned data is coupled with

regularization constraints to resolve the reconstruction inverse

problem [29]. The purpose of the regularization can be regarded

as anisotropic smoothing. We implemented similar bilateral

filtering for anisotropic smoothing to restore and preserve the

plaque edge [30]. Region growing and edge detection methods,

like local maximal gradient [15] can be used to localize the

Figure 4. a) 2D slice from original DICOM images. b) Deconvolution result. c) Bilateral filtering result. d) A profile is drawn across the stenosis
region and the normal vessel. Image intensity level is normalized for comparison.
doi:10.1371/journal.pone.0086949.g004
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boundary directly. As depicted in Figure 4, bilateral filtering

results show a clear edge at the location of the stenosis.

Center line extraction also called skeleton extraction is a critical

procedure for geometry reconstruction. An accurate extraction

remains a challenging research topic, where a comprehensive

survey can be found in Cornea et al. [31]. The methods of

diameter or CSA computation can be separated into four

categories: derivative-based, threshold-based, densitometry, and

model-based techniques [32]. For stenosis, the category should be

considered based on accuracy.

The geometric extraction methods are divided into image

domain or geometry domain. Direct description of an object in

image domain implies the image element is on volume grid, and

the accuracy is on the level of a discrete pixel value. The

disadvantage is that there is position deviation of half a voxel, at

most. If an object is represented in the geometry domain, or

triangle mesh domain, the accuracy is improved by converting the

Figure 5. a) Area Comparison of CT and IVUS for a representative LAD. The thick dotted line the IVUS CSA and the thin dotted line is the CT
data. b) The percent of error ((CSAIVUS2CSACT/CSAIVUS)*100) for each point pairs between CT and IVUS for LAD. c) Area Comparison of CT and IVUS
for representative LCX. d) The percent of error for each point pairs between CT and IVUS for LCX. e) Area Comparison of CT and IVUS for RCA with a
stenosis at the bifurcation. f) The percent of error for each point pairs between CT and IVUS for representative RCA.
doi:10.1371/journal.pone.0086949.g005
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data into a continuously determined value. The center line

jaggedness problem can only be eliminated in the geometry

domain. Jaggedness is the typical problem in skeleton thinning

algorithms [33–39]. Jaggedness is demonstrated visually in Figure
S1a. The error is derived from numeric representation, which is

clearly illustrated at the large curvature positions. To overcome

the problem, a smoothness processing was applied to thinned

results and then interpolation was implemented on the thinned

points [14].

The Bézier curve served as both interpolation and a filtering

function. Bézier curve control points do not always lie on the curve

which can make the jagged center line smoother. Over-smooth-

ness caused by the Bézier curve is modified by a local Bezier curve.

Besides the image volume domain computation, the use of a mesh

surface to obtain the center line is another preferable method if

there is a directional computation that can be pointed to center

points. The well-known mesh contraction method uses the normal

vector [40]. A similar method can be found in Nordsletten et al.

[41] and Wischgoll et al. [15] which uses a vector or vector field

analysis to localize the center point. The CSA can be obtained in

the same process, but there are gaps among some center points. In

this study, morphometric refinement computations were done in

simpler and direct processing steps. The initial center line can be a

discrete value, and it is easy to convert it into a continuous value.

Some limitations of the current approach are noteworthy. First,

the proposed CSA extraction can only process a straight vessel

without bifurcation and it is necessary to remove branches from

the target artery by manual operation or by computer automation.

For those vessel segments near a bifurcation, the removal of one a

branch can be made based on the segmentation results. The

stenosis in the interested vessel of interest can be retained, and the

center line can still be refined using a Bézier curve to obtain CSA.

Although bifurcations are eliminated in determination of CSA,

this step does not affect the accuracy of the entire vessel. Second,

the starting points in IVUS do not always coincide accurately with

the CT image and this can result in length misalignment. The

same problem can be found at some end points, where the ratio of

difference between CT and IVUS is larger than those from other

segments. The angiograms were used to better match the start and

end points of IVUS corresponding to CT images. Finally, the

majority of the computational cost stems from the segmentation

steps. For high quality images, it is not difficult to distinguish the

artery from other tissue. Low quality images may cause

unsatisfactory segmentation results, which may be due to contrast

agent density variation, insufficient image resolution, or patient

physiological variability. The overlapped regions in the image

require a more complicated analysis algorithm. In this study,

manual intervention was used in these specific positions. A

Machine Learning approach can be used for development of an

automated method [12,13,42], but it requires a large amount of

training samples for statistical analysis of local features. Some

suggested approaches use classical pattern recognition technology

to design segmentation tools, but the establishment of training

samples is not well rooted to allow generalization of algorithms.

Further improvements should rely on the optimized feature

selection and should be undertaken in the future studies.

Conclusions

This study validated morphometric data from CT images based

on IVUS. The proposed method of CSA extraction is accurate for

3D geometric reconstruction including stenosis in coronary

arteries. The CT geometric reconstructions can be used to

construct mathematical models for biomechanical simulation.

Table 1. An example of IVUS scanned that only includes
eight out of more than 1600 frames from one LAD.

Frame Position MaxLD MinLD AvgLD LArea

1 0.0167 4.26 3.98 4.13 13.2

2 0.0335 4.24 3.98 4.12 13.2

3 0.0503 4.24 3.98 4.12 13.2

4 0.0671 4.24 3.98 4.12 13.2

5 0.0838 4.24 3.98 4.12 13.2

6 0.100 4.23 3.98 4.11 13.1

7 0.117 4.23 3.98 4.11 13.1

8 0.134 4.23 3.98 4.11 13.1

MaxLD, Min LD, AvgLD and LArea represent maximal, minimal, and average lumen
diameter and lumen area, respectively.
doi:10.1371/journal.pone.0086949.t001

Figure 6. a) A linear least square fit of all data from CT and IVUS diameter: the solid dot is the scattered data pairs, the solid line is
the fitted line and dotted line is the y = x function. b) A linear least square fit of all data from CT and IVUS CSA.
doi:10.1371/journal.pone.0086949.g006
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Supporting Information

Appendix S1

(DOCX)

Figure S1 a) Circle dotted line is the result of thinning
algorithm without filtering. Solid circle dotted line is the
thinned with filtering result. The thin solid line is the Bézier

result from unfiltered thinned line. The thick solid line represents

the Bézier result from filtered thinned line. Square region is the

surface mesh. b) The improvement of center line extraction from

initial estimation. Bézier curve is shown as a solid line, and the

center line is the dotted line. CSA is the solid polygon with an

asterisk at its center point. c) Comparison between partly

interpolation and full interpolation. d) 3D geometry of RCA,

three CSAs are overlaid on surface mesh, middle one is near the

bifurcation. e) The reconstructed CSA in segment of vessel from

d, three CSAs are indicated in thick lines and positions are marked

by circles in the curve of lumen area of that segment. This RCA

vessel corresponds to curve in Figure 5e.

(DOCX)

Author Contributions

Conceived and designed the experiments: TL GSK. Performed the

experiments: TL. Analyzed the data: TL TW YH. Contributed reagents/

materials/analysis tools: TL TW YH. Wrote the paper: TL GSK. Data

Collection: BKK.

References

1. Jung J, Lyczkowski RW, Panchal CB, Hassanein A (2006) Multiphase

hemodynamic simulation of pulsatile flow in a coronary artery. Journal of

biomechanics 39:2064–73

2. Salzar RS, Thubrikar MJ, Eppink RT (1995) Pressure-induced mechanical stress

in the carotid artery bifurcation: a possible correlation to atherosclerosis. Journal

of biomechanics 28:1333–40

3. Simmons CA, Grant GR, Manduchi E, Davies PF (2005) Spatial heterogeneity

of endothelial phenotypes correlates with side-specific vulnerability to calcifica-

tion in normal porcine aortic valves. Circ Res 96:792–9

4. Stein PD, Hamid MS, Shivkumar K, Davis TP, Khaia F, Henry JW (1994)

Effects of cyclic flexion of coronary arteries on progression of atherosclerosis.
The American journal of cardiology 73:431–7

5. Thubrikar MJ, Baker JW, Nolan SP (1988) Inhibition of atherosclerosis

associated with reduction of arterial intramural stress in rabbits. Arteriosclerosis,

Thrombosis, and Vascular Biology 8:410–20

6. Cebral JR, Lohner R, Soto O, Yim PJ (2001) On the modeling of carotid artery

blood flow from magnetic resonance images. ASME-PUBLICATIONS-BED

50:619–20

7. Taylor CA, Draney MT, Ku JP, Parker D, Steele BN, et al (1999) Predictive

medicine: computational techniques in therapeutic decision-making. Computer

Aided Surgery 4:231–47

8. Wang KC, Dutton RW, Taylor CA (1999) Improving geometric model

construction for blood flow modeling. Engineering in Medicine and Biology
Magazine, IEEE 18:33–9

9. Calvo B, Pena E, Martinez M, Doblaré M (2007) An uncoupled directional
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