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ARTICLE INFO ABSTRACT

Keyhole surgeries become increasingly important in clinical daily routine as they help minimiz-
ing the damage of a patient’s healthy tissue. The planning of keyhole surgeries is based on
medical imaging and an important factor that influences the surgeries’ success. Due to the image
reconstruction process, medical image data contains uncertainty that exacerbates the planning of
a keyhole surgery. In this paper we present a visual workflow that helps clinicians to examine
and compare different surgery paths as well as visualizing the patients’ affected tissue. The anal-
ysis is based on the concept of hierarchical image semantics, that segment the underlying image
data with respect to the input images’ uncertainty and the users understanding of tissue compo-
sition. Users can define arbitrary surgery paths that they need to investigate further. The defined
paths can be queried by a rating function to identify paths that fulfill user-defined properties.
The workflow allows a visual inspection of the affected tissues and its substructures. Therefore,
the workflow includes a linked view system indicating the three-dimensional location of selected
surgery paths as well as how these paths affect the patients tissue. To show the effectiveness of the
presented approach, we applied it to the planning of a keyhole surgery of a brain tumor removal
and a kneecap surgery.
© 2018 Published by Elsevier B.V. on behalf of Zhejiang University and Zhejiang University Press.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0y).
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1. Introduction reconstruction process. Including this type of information into

the planning process of a keyhole surgery is not trivial, as avail-

Keyhole surgeries become increasingly important in clini-
cal daily routine, as they help keeping the impact to patient’s
healthy tissue minimal. To accomplish such a type of surgery,
medical doctors need to determine a proper surgery corridor
that allows them to reach the location where the actual surgery
takes place. Determining this corridor is based on medical im-
age data that is captured of the patient. While planning a key-
hole surgery, medical doctors need to identify areas, that should
not be affected by the surgery and discuss possible risks during
the surgery itself Reisch et al. (2013).

Planning keyhole surgeries can be difficult, as the underlying
image data is affected by uncertainty resulting from the image
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able visualization techniques are not communicating this type
of information. Furthermore, the state of the art in reviewing
medical image data in clinical daily routine does not provide a
suitable visualization methodology that helps decision makers
discuss surgery options intuitively and fast (see Section 2).

To solve this problem, this paper presents a novel visual ana-
lytics workflow to plan keyhole surgeries based on hierarchical
image semantics (see Section 4). The workflow carefully se-
lects suitable visualization and analysis methods and combines
them to allow an easy to understand workflow for surgery anal-
ysis. Based on an extensive analysis of the keyhole surgery task
(see Section 3), our workflow consists of four major steps, that
are designed to be proceeded by medical doctors intuitively:
In Step 1, medical doctors can define a hierarchical image se-
mantic that outputs a segmentation containing semantic seg-
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ments that are presented in a probabilistic manner according
to the uncertainty of the underlying image data. In a second
step, users can define different possible surgery corridors, that
need to be examined and compared. After that, medical doctors
can query the defined paths expressing structures in the human
body that should not be affected. Finally, we provide an intu-
itive visualization consisting of a linked view. The first view
shows a three-dimensional rendering of the most important hu-
man structures, the patients body and all surgery corridors that
are queried. In the second view, all queried paths are presented
in a two-dimensional visualization indicating all tissues, that
are affected as well as highlighting areas that cannot be deter-
mined clearly as the underlying image data is affected by un-
certainty. This forms a visual feedback loop that helps medical
doctors adjusting their surgery paths and determining the risks
of a chosen surgery corridor.
Therefore, this paper contributes:

e Anrequirements analysis of a proper workflow for keyhole
surgery planning

e An visual analytics workflow including uncertainty infor-
mation, that allows medical users to plan keyhole surgeries

e An intuitive visualization of keyhole surgery corridors that
communicates the uncertainty of the underlying image
data

To show the effectiveness of the presented technique, we ap-
plied the visual analytics workflow to plan two different keyhole
surgery scenarios. First, we plan the removing of a brain tumor
and second we apply our technique to the surgery of a kneecap
in Section 5. We discuss the presented approach and its results
in Section 6. At last, Section 7 will conclude this work and
point out future directions.

2. Related Work

The following section will discuss the state of the art in
surgery analysis visualization as well as uncertainty visualiza-
tions in the medical area with respect to surgery planning sce-
narios.

2.1. Visual Analysis in Surgery Planning

Visualizations are a key concept in assisting medical doctors
during the planning of surgeries Robb (1999). It helps clinicians
understand their data and make decisions for further treatment
and surgeries. The following Section summarizes visualization
techniques that help medical doctors to plan surgeries.

Buchart et. al. Buchart et al. (2009) presented a visualization
that helps medical doctors understanding the spatial context of
the captured image data to improve the planning of a surgery.
Although this is an important aspect of a surgery planning, the
approach does not allow to visualize and estimate the quality of
a surgery path. Therefore, the presented approach includes an
intuitive visualization of surgery paths and the tissues, that are
affected.

Gering et al. Gering et al. (1999) presented a methodology,
that includes surgery path geometries in the slice-by-slice re-
viewing methodology used in clinical daily routine. Although,
this technique is build on the most prominent reviewing method
in clinical daily routine, it can be hard to follow surgery paths
throughout the patients body while solely reviewing a single
slice at a time. Therefore, the presented visualization aims to
combine the spatial aspect of the surgery corridor geometry
with the easy to use 2D representation.

A variety of approaches visualizes human organs or struc-
tures and their location with respect to the surgery corridor by
using isosurfaces Steen and Widegren (2013); Georgii et al.
(2016). Although this is a good starting point for the presented
work, a visualization solely based on isosurfaces can either re-
sult in visual clutter or structures need to be discarded in the
visualization. To solve this problem, the presented approach in-
troduces a visualization type, that is capable of visualizing all
structures in the human body that are affected by a surgery path.

Several approaches aim to improve the visualization of a pa-
tients tissue to allow medical doctors to asses the quality of
an option for a surgery setting Paolis et al. (2010); Mhler and
Preim (2010). Although this can give medical doctors a good
impression of risky areas during an operation, the visualizations
do not include a mechanism to plan and test surgery corridors
or the manner they interfere with the patients tissue. Therefore,
the presented visualization allows medical doctors to specifi-
cally plan surgery corridors and review their effect on the pa-
tients tissue.

Smit et al. Smit et al. (2017) presented a visualization tech-
nique based on iso-surfaces, that aims to visualize the target
structures of the surgery and risky areas surrounding them .
Although this gives users an first impression of the shape and
size of the target structure, the visualization does not form a
workflow where users can plan the required surgery. Therefore,
the presented paper allows users to determine possible surgery
paths and visualize the structures of the human body that affect
them.

Girod et al Girod et al. (1995) presented a method, that is able
to improve the visual representation of human soft tissues, as
they are usually hard to identify in medical image data. There-
fore, they utilize a segmentation, that does not include uncer-
tainty information Furthermore, the underlying segmentation
does not provide uncertainty information. Uncertainty is an im-
portant factor in medicine, as medical image data is affected by
uncertainty. Therefore, the presented workflow quantifies and
communicates uncertainty throughout the entire surgery plan-
ning process.

2.2. Uncertainty Visualization of Medical Image Data

In the medical field, uncertainty visualization become in-
creasingly important as they can help medical doctors refine
their diagnosis or plan proper treatments. As the underlying
image data is affected by uncertainty due to the reconstruction
process, the quantification and communication of image uncer-
tainty for medical tasks is crucial. An overview of uncertainty
visualization is given in Bonneau et al. (2014). The follow-
ing section will discuss the most relevant work considering the
planning of keyhole surgeries.
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Fig. 1. Overview of the visual anaytics workflow to plan keyhole surgeries. The uncertainty of the input image is quantified and propagated throughout the
planning process. The planning process consists of four major steps: 1) Users can create an hierarchical image semantic. 2) Potential surgery corridors
can be defined. 3) Users can query the defined surgery corridors by setting restricted or desirable areas. 4) Visual feedback loop to improve the parameters

of a proper surgery corridor.

Simpson et al. Simpson et al. (2006) performed a study that
showed how uncertainty information can enhance the planning
of surgery. Motivated by these results, the presented work-
flow utilizes uncertainty information of the input image to assist
users while identifying risks during the planning of a surgery.

Lundstrom et al. Lundstrom et al. (2007) presented an
uncertainty-aware visualization for volume rendering tasks in
medical applications. Therefore, they adapt transfer function
for volume rendering thus it is able to express the uncertainty
of the underlying image data. Although this gives medical doc-
tors an insight to the underlying image data, the approach is
not sufficient to plan surgeries as it does not allow to examine
surgery paths. In contrast to this approach, the presented work-
flow utilizes uncertainty information to guide user through the
entire planning of a keyhole surgery.

Medical image representations including uncertainty infor-
mation can be found for ultrasonic data Berge et al. (2015) as
well as medical image segmentation tasks Saad et al. (2010),
where the advantages of an uncertainty-ware approach be-
come clear. Therefore, the presented workflow utilizes an
uncertainty-ware segmentation approach to help medical users
in estimating the risks of planned corridor for a keyhole surgery.

Azimian et al. Azimian et al. (2013) presented a visual sys-
tem to perform preoperative planning of surgeries that helps
determining proper surgery robot configurations. This is a suit-
able method to create an awareness of uncertainty in the plan-
ning process. Unfortunately, this methodology does not indi-
cate which tissues are affected through the surgery. In contrast
to this, the presented methodology offers a visualization that
indicates the affected tissue of a patient while considering the
underlying uncertainty information.

Razmi et al Razmi et al. (2015) presented a planning tool for
surgery corridors that include uncertainty information. The re-
sulting visualization gives medical users a good overview about
the risks of a surgery. Unfortunately, the approach, does not
allow users to try different surgery corridor configurations and
compare them. Therefore, the presented system forms a work-
flow that assists medical doctors in planning a keyhole surgery
and communicates the image uncertainty throughout this pro-
cedure.

3. Application Analysis and Requirements

A keyhole surgery is a minimally invasive surgery technique,
that helps minimizing the trauma of healthy tissue or organs
Raveenthiran (2010). Therefore, medical doctors utilize a thin
corridor to access the target structure of a surgery. In order
to achieve a successful surgery outcome, this corridor needs to
be planned carefully. Therefore, medical doctors utilize im-
age data, such as CT scans or MRT scans and try to identify
possible and proper surgery corridors. In clinical daily rou-
tine, this can require a large amount of time, as the standard
reviewing method of medical image data is not able to assist
properly in the determination of a surgery corridor. The state
of the art slice-by-slice reviewing method is not able to give an
spatial impression of the surgery corridors and the affected tis-
sues. Furthermore, it does not allow the comparison of surgery
options and discussion of risks. Therefore, this work aims to
provide a workflow that allows medical doctors to plan surgery
corridors based on image data. To achieve this, the following
requirements need to be fulfilled.
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R1: Determination of Proper Surgery Corridor Geometries
Shamir et al. (2012). The geometry of a surgery corridor is the
key point leading to a successful surgery outcome. A correct
position, that interferes minimally or not at all with important
structures of the human body as well as a proper diameter that
allows the proceeding of the surgery needs to be determined
during the planning procedure.

R2: Communication of Risks Shamir et al. (2012). In many
scenarios surgery paths need to be located very close to im-
portant human tissues or an intersection with the tissue cannot
be avoided completely. Therefore, medical doctors need to be
aware of this scenarios to be able to react to complications dur-
ing the surgery itself. A workflow for keyhole surgery planning
needs to include and communicate this type of information to
be useful for medical doctors.

R3: Comparison of Options Trope et al. (2015) . While plan-
ning a keyhole surgery, medical doctors try to determine the
best option of all possible surgery corridors, therefore a system
in assisting in keyhole surgery planning needs to be able to test
different diameters of surgery corridors and different geome-
tries. For those corridors, medical doctors need to be capable of
inspecting the affected tissues and especially review areas that
cannot be determined clearly due to uncertainty contained of
the underlying image data.

R4: Fast and Easy to Use Gillmann et al. (2016). In order to
promote a novel workflow in clinical daily routine, the work-
flow needs to address the user group, their needs and their man-
ner of decision making. In clinical daily routine, planning of
surgeries needs to be accomplished fast and reliable to be suit-
able for a daily use. Therefore, the goal of a novel visual work-
flow is to provide a keyhole surgery analysis tool that is easy to
use, with an proper computational amount. In addition medi-
cal users need to be able to use the tool without having deeper
knowledge of computational concepts.

R5: Inclusion of Uncertainty Information Gillmann et al.
(2016). As medical image data is affected by uncertainty due
to the image reconstruction process, this uncertainty needs to
be communicated to create an awareness of unknown situations
during the surgery process. Therefore, the goal is to know the
position of the desired structure that needs to be reached in the
keyhole surgery and its positional uncertainty. Furthermore,
surgery corridors, that are crossing areas that cannot be deter-
mined clearly need to be indicated or highlighted. This infor-
mation is very important thus medical doctors are aware, that
the path is crossing an area that could not have been determined
based on the underlying image data.

4. Methods

According to the defined requirements in Section 3, this
work aims to present an uncertainty-aware workflow for key-
hole surgery planning using hierarchical image semantics. The
general workflow can be reviewed in Figure 1. Starting with the
input image data / and its’ uncertainty quantification, users can

d) . e)

Fig. 2. Uncertainty quantification of image data. Error measures as a) acu-
tance, b) gaussian error, c¢) local contrast, d) local range and e) salt and
pepper error define a high-dimensional error vector. The length of this
error vector (f) is the resulting uncertainty of the input image.

define an hierarchical image semantic, which is a fuzzy image
segmentation resulting in user-defined hierarchical segments.
Next, medical doctors can define arbitrary surgery paths that
they want to examine. In a third step, our workflow provides an
intuitive linked view, that presents a surface view of the queried
surgery corridors and a 2D view containing the segments, that
are affected by the surgery corridor. In the last step, users can
select surgery paths that fulfill specific requirements. The fol-
lowing sections will explain each step in detail.

4.1. Uncertainty Quantification

The basic principle of the presented approach is the commu-
nication of the input image uncertainty throughout the entire
keyhole surgery planning procedure. To achieve this, a proper
uncertainty quantification of the input image / is required. In
this paper we utilize the image uncertainty quantification pre-
sented by Gillmann et al. Gillmann et al. (2017). The approach
uses a set of error measures, that are able to estimate the er-
ror of each pixel and create an high-dimensional error vector.
This is important, as different error measures focus on different
mathematical aspects. The length of this error vector of a pixel
results can be used as an uncertainty indicator for the respective
pixel as the vector is long, when multiple error measure have a
high output, whereas the error vector is short, we the underlying
error measures have a low output.

Figure 2 shows the error outputs for a slice of the brain tu-
mor dataset and the resulting length of the error vector. The
images show, that the error response for the single errors are
varying massively. Figure 2 shows the resulting length of the
error vector, which is utilized throughout the presented work-
flow to communicate the uncertainty of the input image.

4.2. Hierarchical Image Semantics

In order to help medical users to inspect surgery corridors,
their location in the human body and especially the effected tis-
sues, it is required to segment the input image data in order to
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Fig. 3. Example segmentation output generated by the hierarchical image semantic approach. a) Resulting segmentation tree 7' capturing the objects and
their subobjects selected by the user. Visualization of the segmentation result of one slice for b) the first level of the segmentation, c) the second level of
segmentation of the foreground, d) the third level of segmentation of the brain including a segment of the brain tumor. The orange boxes indicate a possible

surgery path to reach the tumor. e) Volume visualization of the tumor segment.

define different areas of the human body. To accomplish this,
the presented workflow utilizes the concept of hierarchical im-
age semantics, an fuzzy and hierarchical image segmentation
approach especially designed for users from the medical area
for Review (a).

The method describes an intuitive image segmentation ap-
proach, where users can define arbitrary segments and set seed
points for each of the segments. Based on this definition, the
utilized methodology outputs a fuzzy segmentation result. In
addition to that, users are enabled to re-segment specific seg-
ments arbitrarily often. The segmentation result can be re-
viewed intuitively and medical doctors are enabled to adjust
their input parameters until they are satisfied with the segmen-
tation result.

The key principle is an separation of superior objects nodes
into its child nodes. Therefore, the algorithm assumes, that the
root segmentation node (the entire image) owns all pixels com-
pletely. Throughout the segmentation process, this ownership is
separated to the child nodes of the tree according to the defined
segments of the user.

The method outputs an segmentation tree capturing, the users
understanding of visible objects in an image and their substruc-
tures 7'(I). Each node n € T captures an image as well, contain-
ing the ownership, that a specific voxel belongs to the selected
segment. This image is referred to as O,. In addition, each
segmentation node obtains an user-defined color C,, that can be
used for visual indication of which voxels belong to a specific
node and how strong this ownership is. The method is espe-
cially designed for medical applications. All segments can be
designed to map the natural understanding of the organs and
tissues, that a medical user has for the input image. As organs,
contain of suborgans and substructures, their structure can be
mapped directly in the segmentation result.

To improve the uncertainty communication throughout this
process, we modified the ownership of the root segmentation
node to express pixels, that are affected by uncertainty utilizing
the length of the error vector as shown in Section 4.1. If the
ownership for a voxel to the root segmentation node is 0, this
means, that the underlying image voxel is highly affected by
uncertainty and should not be considered in the segmentation
process. On the other hand, if the ownership of a voxel is 1,
the voxel is trustworthy and can be utilized completely in the

segmentation process. This is an important adjustment of the
segmentation algorithm to ensure, that the image uncertainty is
propagated along the computational pipeline of the presented
method.

Figure 3 shows a possible output of a hierarchical image se-
mantic applied to the MRI dataset capturing a human head. The
brain of the patient contains a tumor, that needs to be identified.
Figure 3 a) shows the resulting segmentation tree and its con-
tained segment. The input image is segmented into foreground
and background considering the uncertainty quantification of
the underlying input image data (a). The foreground is further
segmented into bones, soft tissue and brain (b). The brain can
be further segmented into its compartments and the contained
tumor. Figure 3 d) shows a volume rendering of all the image
data containing the ownership of the tumor class. The voxels
are visualized by the color assigned to the tumor class and the
ownership stored in the respective node. Using this type of vi-
sualization users can review their segmentation output and ad-
just the input parameters until they are satisfied. Figure 3 b-e)
indicates a potential surgery path. The two-dimensional repre-
sentation is not able to indicate the entire spatial information
required to judge the quality of the selected surgery path. Con-
trary to this, a three-dimensional representation would lead to
visual clutter. Furthermore, the surgery path needs to be re-
viewed in all three levels of the hierarchy to identify the tissues,
that are affected by the surgery path. This motivates a novel
visualization approach to help medical doctors to understand
which human tissues are affected, as shown in the following.

4.3. Definition of Surgery Paths

In order to investigate the quality of a surgery corridor, users
can define an arbitrary amount of different corridors, that they
are interested in investigate further. Therefore, the geometry
of an surgery corridor needs to be defined. As usual in clinical
daily routine, keyhole surgeries are assisted by medical devices,
that help implementing the surgery corridor. Based on the me-
chanics of such an device, starting points of a surgery corridor
are located on the surface of a sphere. The center of the sphere
is the endpoint of the surgery corridor, which needs to be lo-
cated at the target of the surgery.

To define the geometry of a surgery corridor ¢, we assume an
cylindrical shape. To define a cylinder, we require a line seg-
ment / and an radius r. As users can define an arbitrary amount
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Fig. 4. Surgery path definition, sampling and visualization. a) Sampling sphere and with 5 random surgery paths. b) Sampling of a single sampling path
through sampling spheres. ¢) Components of the resulting visualization images according to the sampling parameters. Example surgery path visualization
using d) Maximum Sampling and e) Average Sampling. f) Hierarchical Image Semantic utilized for the sampling process.

of such corridors, all start points of these corridors need to be
located on an user defined sphere m, represented by a position
Pm in space and a radius r,,,. The presented system assists users
in defining the circle as well as placing the required settings
for surgery paths. Based on the geometry definition, users can
query, visualize and refine the surgery arbitrary corridors.

Figure 4 a) shows a user defined sphere m. Based on the
sphere, 5 surgery corridors are defined. All surgery corridors
origin on the surface of the sphere m and end in the center of
the sphere. Resulting from this their length is always r,,. We
allow users to set arbitrary points on the sphere surface to define
surgery corridors.

4.4. Visualization of Surgery Paths

In order to allow users to compare surgery corridors, we pro-
vide an interactive multi-view system, consisting of two visual-
ization types. First, the visualization consists of a volume view
showing the queried tunnels. The volume view shows a surface
representation of the human body, the target structure and its
uncertainty and the queried path geometries. Second, the sys-
tem provides a 2D view showing the sampled surgery tunnels
and the tissues, that are affected considering the user defined
hierarchical image semantic. The visualization techniques re-
quired for these views will be discussed below.

4.4.1. Sampled View

As medical doctors are interested in the tissues and structures
of the human body that are affected by a surgery path, we pro-
vide a sampling view, that visually encodes the tissues of the
human body that are affected by each surgery path.

To accomplish this, the presented view needs to visualize all
queried surgery corridors and the entirety of all affected struc-
tures depending on the underlying segmentation information.
Therefore, a three-dimensional visualization is not suitable, as
the utilized segmentation is hierarchical and the visualization of
one level in the hierarchy would result in visual clutter.

To solve this problem we adopt the principle of curved planar
reformation Mistelbauer et al. (2013), where sampling planes
are utilized to flat each disk in a volumetric structure. In the
presented case, the surgery corridor needs to be sampled thus it
can be shown as an image. Therefore, the user sets parameters
to define the sampling of each surgery corridor are utilized to
sample and visualize to create an intuitive visualization.

The sampling is a spherical sampling around the center line
of each cylinder. Users can define the amount of sampling disks
(s) along the centerline and the number of sampling circles (¢)
located at the sampling disks with their number of sampling
points (#). An example of this sampling can be found in Figure
4 b). Depending on the set parameters, the algorithm produces
an image with the size of s X (v * 1), where each pixel captures
an accumulation of a samplings disk output (reffig:sampling c)).
For the accumulation different strategies can be utilized. In this
paper, we present the two common ones maximum sampling
and average sampling Kanitsar et al. (2002). As the underlying
hierarchical image segmentation needs to be sampled, we need
to adjust the principles to be suitable for our input.

In addition, the hierarchical structure of the segmentation tree
needs to be expressed in the resulting visualization. Therefore,
each visualization can be separated into different subimages,
each representing one layer of the segmentation tree. Therefore,
users can inspect the sampled output of each layer and therefore
understand how the surgery corridor affects structures and its
substructures.

Usually, a maximum intensity sampling searches for the
maximum value probed along the sampling sphere and uses this
value for visual representation. In the presented case, this is not
possible directly, as the segmentation does not provide one im-
age. Instead, depending on the considered nodes in the segmen-
tation tree, multiple images need to be utilized to produce a vi-
sualization. Resulting from this, a maximum intensity sampling
tries to find the node outputting, the maximum total weight on a
sampling sphere. For the resulting visualization, the node out-
putting the highest total weight determines the color of the pixel
visible in the resulting image.

To include the uncertainty information of the segmentation
result in the sampling view, we adjust the opacity of the out
image. Therefore, we set the opacity to the maximum of (1-n)
of all segmentation nodes that are sampled. As Gillmann et al.
? mentioned in their paper, this expresses the uncertainty of the
segmentation result as shown in Figure 4 d).

Contrary to this, an average sampling allows to average the
sampled colored weighted by the sampled total weight of each
node. The user can select the utilized sampling technique, re-
quired to show an image of the surgery corridor as shown in
Figure 4 d). Contrary to the maximum sampling, the opacity
of the average does not need to be adjusted. In cases, where
tissues cannot be determined clearly, the visualization shows a
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Fig. 5. Geometry visualization of the presented methodology. The visu-
alization captures the outer surface of the human body (grey), the target
structure (light orange) and its uncertainty surface, as well the user defined
surgery paths.

mixed color of those two tissues.

4.4.2. Surface View

The surface view combines geometric surfaces representing
the most important aspects of the surgery. An example is shown
in Figure 5. It consists of three main visualizations: a surface
representation of the human body, a surface-representation of
the queried surgery corridors and an uncertainty-aware surface
representation of the target structure.

The surface for the visualization of the surgery corridors can
be directly created from the corridors geometry definition. The
surface of the human body can be generated by depicting the
node in the segmentation tree, that represents the human body.
We utilize a marching cubes algorithm to extract the represent-
ing surface based on the probability volume for the respective
node. Users can depict the iso-value required for the marching
cubes algorithm.

Different from the previous objects of the surface view,
the visualization of the target structure will be shown as an
uncertainty-aware geometry. The size, shape and location of
the target structure is an important indicator that determines a
proper selection of the surgery corridor geometry as the size of
the target structure directly corresponds with a proper surgery
corridor radius. As the exact size of the target structure is hard
to determine due to the uncertainty of the input image, the sur-
face view aims to visually encode the resulting positional uncer-
tainty of the target structures geometry. Therefore, we use an
uncertainty-aware surface visualization presented by Gillmann
et al. for Review (b). The approach models the positional un-
certainty of the target structure by introducing a surrounding
surface covering all possible geometries with an user-defined
probability. Therefore, users have a visual tool to estimate the
size, shape and position of the target geometry and are enabled
to adjust the size of the surgery corridor.

4.5. Querying of Surgery Paths

In order to determine the quality of a surgery path, the pre-
sented workflow allows users to query defined surgery corri-

dors. This is accomplished by an evaluation of each surgery
corridor. Each node in the segmentation tree can be rated with
an importance i by the user. In addition, the surgery corridor
needs to be sampled to determine which structures are affected
by the surgery corridor to generate the sampling view. We uti-
lize the same sampling spheres and their output for the owner-
ship for each node to create a rating function that combines the
user assigned importance values with the sampled values.

The entirety of all sampling points is referred to as S. For
each sampling point, all probability volumes of the segmenta-
tion tree can be sampled as s(/,) with s € S andn € N. A
rating function r(c) for a surgery corridor can be computed by
combining all probabilities for the entire segmentation tree to a
weighted sum, defined as:

HO)= D > h(s) (1= i(w) (1)

neN se§

The function outputs a real value between [0, inf]. The closer
the value is to 0, the less proper is the defined surgery corridor
according to the user defined rating of the segmentation nodes.
In other words, the corridor would harm a large amount of hu-
man tissues that where declared as undesired by the users. Con-
trary to this, a high value of r(c) means, that the corridor path is
located in human structures, that can be affected by the surgery
corridor.

Based on the rating function r(c), the user can define a ratio
that expresses the amount of surgery corridors that can be in-
spected further. Therefore, medical user can select an percent-
age that works as a threshold. If the user defines a threshold of
0%, it means, that solely the best rated surgery corridor will be
displayed. Contrary to that, if the user selects a percentage of
100%, all sampled paths are visible.

The rating function r(c) gives medical doctors an suitable im-
pression of which surgery corridors are suitable and helps users
identifying settings for proper surgery paths directly. When
querying surgery paths, the respective geometry visualization
of a path is either fully visible or very transparent.

5. Results

In the following section the presented workflow is used to
plan keyhole surgeries of different purposes. The presented
approach was implemented using C++ with the vtk Schroeder
et al. (2006), itkMolkentin (2007) and Qt Johnson et al. (2013)
libraries. The following section will present two keyhole
surgery planning scenarios performed by the presented work-
flow.

5.1. Example 1: Tumor Removal Surgery

A prominent example for keyhole surgeries is the removal of
a brain tumor. The planning of this type of surgery is an crucial
factor for its success. While the tumor needs to be removed
completely, a second goal is to keep the damage to the human
brain minimal.

Figure 6 shows the application of the presented approach to
a real world dataset from the cancer imaging archive Scarpace
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Fig. 6. Uncertainty-aware surgery planning applied to a brain tumor removal scenario. a) Geometry visualization. b) The best two surgery paths according
to the user defines importance values for each node. ¢) GUI interface to define surgery paths and the sampling sphere. d) Hierarchical image semantics

with the user defined importance values for each node.

et al. (2016). The example shows a brain dataset that contains a
tumor Clark et al. (2013) with the size of 256x215x200.

Figure 6 a) shows the surface representation of the sampling
sphere and the surface of the patients head. In addition, the
surface of the tumor is shown inside the head surface with its
uncertainty surface. The center of the sampling sphere is posi-
tioned inside the tumor (Figure 6). 20 surgery paths where gen-
erated and evaluated by the user. Figure 6 b) shows the two best
suitable path according to the rating function. The importance
of the cerebellum was set to 100% to indicate, that this struc-
ture is not allowed to be affected by the surgery path. These
setting can be made through the interface shown in d). They are
designed as pie charts, that are empty, when the structure is not
important and full, when the structure is extremely important.
The sampling strategy is set to maximum sampling.

The first level visualization of the surgery corridor shows
how the surgery paths moves through the background of the
image (white) until it reaches the patients head (blue). For the
human head, the underlying intersected structures are the cra-
nial bone (green), the soft tissue (yellow) and the finally the
brain (red) of the patient.

Reviewing the intersected tissues on the third level of the hi-
erarchical image semantic, it can be shown, that the surgery
corridor, solely interferes with the cerebrum and the brain of
the the patient. As defined in the importance function, this
structure can be interfered. Figure 6 b) shows the two best op-
tions for these settings. In the geometry view they are indicates
as opaque. The linked view systems fuses two important as-
pects of the surgery scenario: the spatial location of the surgery
corridor (geometry visualization) and the affected tissues in all

level of hierarchies of the hierarchical image semantic (sam-
pling view).

The result shows, that the presented system can be used to
find the best surgery corridor out of the defined surgery corri-
dors, by utilizing the defined rating function. The interface is
structured clearly and the visualizations are linked to form an
intuitive representation.

5.2. Example 2: Kneecap surgery

A further example for the application of the presented ap-
proach is the planning of a kneecap surgery. The dataset shows
a CT scan of the lower body of a patient. Both legs are captured.

The target of the surgery corridor lies behind the left knee
cap, as the medical doctors aims to reconstruct the tendon of the
patient. As a first step, the input image data is segmented us-
ing the concept of hierarchical image semantics. The resulting
segmentation tree can be reviewed in Figure 7 a). The resulting
segmentation tree captures the left food and re-segments it into
its soft tissue and the entirety of all bones. Based on this seg-
mentation, the bones are re-segmented into the single bones of
the human leg , as shown in Figure 7 m).

The geometry visualization is generated, as shown in Figure
7 a) and b). It contains, the left foot of the patient as the sur-
rounding structure, the uncertainty-aware geometry visualiza-
tion of the knee cap and 10 surgery paths, that should be tested
for their quality to lead behind the knee cap while not injuring
the knee cap or any other bone of the patient.

The goal for a usable surgery path was to not interfere with
the kneecap of the patient. Therefore, the importance values of
the knee cap is set to 0% which means, that it should not be
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affected at all. As the right foot is not targeted in the surgery, its
probability is also set to 0%. The same holds, for the remaining
bones in the human body. Differently to that, the soft tissue of
the left foot is supposed to be affected by the surgery path and
therefore set to 100%.

The resulting rating of the ten different paths is shown in Fig-
ure 7 c¢) -1). They are sorted from bad to good. c¢) and d) insult
the knee cap of the patient and are therefore rated as worst. Fol-
lowed by that, the algorithm outputs all paths, that are affecting
the lower bone of the patient. This is not desired too. The last
path (1) holds the only path, that does not intersect with any
bone of the patient and is therefore rated as the path suitable
path.

The example shows, that the querying function helps users
select surgery paths according to the importance for each node
not to be interfered by the surgery path. The visual system al-
lows users to further inspect the queried paths and review which
tissue are affected and at which position on the surgery path.

6. Discussion

The presented workflow was designed to fulfill the defined
requirements for keyhole surgery analysis mentioned in Section
3. The following section discusses how these requirements are
tackled.

In order to assist medical doctors in determining proper
surgery corridors (R1) the presented system allows to review
the surgery corridor in two different manners: first, as a geo-
metric representation showing users if the target structure can
be captured by the selected surgery corridor. Second, the pre-
sented system allows a visual representation of the hierarchical
image semantic, that are affected by the selected surgery corri-
dor.

To communicate possible risks of a surgery (R2), the pre-
sented workflow is capable of representing different surgery
paths and rate their quality according to user defined ratio de-
termining the importance to not affect a specific tissue.

The presented system helps medical doctors in comparing
different options of surgery corridors (R3). This is accom-
plished by representing the affected tissues as a 2D view, that
can be reviewed easily. In addition, the rate function r(c) is able
to query surgery corridors according to the users setting on how
important it is to avoid specific tissues.

In order to provide a fast and easy to use workflow that as-
sists in planning keyhole surgeries (R4), the presented workflow
guides the user through the steps of surgery planning carefully
implementing suitable visual analysis methodologies. By using
different visualizations and interactively connect them, medical
doctors can use the presented workflow without the need of a
deeper knowledge of computer science principles.

At last, the communication of uncertainty (R5) is accom-
plished by quantifying the uncertainty of the underlying im-
age data, propagate the uncertainty information along the single
steps of the workflow and finally visually communicate the in-
formation in all visualizations. Firstly we started with an un-
certainty quantification of the input image, which is utilized
to improve the uncertainty propagation of the hierarchical im-
age semantics. Although hierarchical image semantics are an
uncertainty-aware concept itself, the image uncertainty quan-
tification improves the resulting segmentation results as it de-
termines areas which are more reliable then others. To com-
municate uncertainty in the surgery path definition process, we
allow the definition of arbitrary surgery paths, show how they
intersect with the hierarchical image semantic and its contained
uncertainty as well as allow an querying to find paths that fulfill
specific requirements. In addition to that, the geometry view
holds an uncertainty-aware visualization of the target structures
geometry to communicate possible sizes and locations to the
user.

We presented the designed workflow to our collaborators that
work in clinical daily routine and they gave us an very positive
feedback. Some statements are listed below:

o [ like the idea that I can test different surgery paths and see
which tissues are affected
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o [like the presented visualization and interaction method as
I can directly select tissues that should not be affected

o [ think this method can tackle a large variety of clinical ap-
plications such as biopsy, vascular surgery and brain tumor
removal scenario

e This is a method that people are willing to pay money for
as it changes a surgery from try and error to a specific plan
that is not to be optimal

7. Conclusion and Future Work

This work presents an uncertainty-aware workflow for key-
hole surgery planning that is based on hierarchical image se-
mantics. To achieve this, we analyzed the needs of medical
doctors for planning a keyhole surgery analysis. The resulting
workflow combines suitbale visualization and analysis methods
to offer an interactive methodology for defining an hierarchi-
cal and fuzzy image segmentation, allow users to test multiple
surgery corridors, query them to find proper suitable surgery
corridor settings and visually inspect the results. The presented
approach is general, thus it can be used for arbitrary settings of
keyhole surgeries. By the design of our workflow we achieve
an easy to use methodology that can determine proper surgery
paths, communicate risks during the surgery, allow comparison
of surgery options and communicate uncertainty information.

As a future goal, we aim to accomplish a clinical study with
the presented system to identify improvements for the presented
workflow. In addition, an inclusion of possible surgery robot
geometries is planned.
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