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a b s t r a c t 

Due to the limitations of existing experimental methods for capturing stereochemical molecular data, 

there usually is an inherent level of uncertainty present in models describing the conformation of macro- 

molecules. This uncertainty can originate from various sources and can have a significant effect on al- 

gorithms and decisions based upon such models. Incorporating uncertainty in state-of-the-art visualiza- 

tion approaches for molecular data is an important issue to ensure that scientists analyzing the data are 

aware of the inherent uncertainty present in the representation of the molecular data. In this work, we 

introduce a framework that allows biochemists to explore molecular data in a familiar environment while 

including uncertainty information within the visualizations. Our framework is based on an anisotropic de- 

scription of proteins that can be propagated along with required computations, providing multiple views 

that extend prominent visualization approaches to visually encode uncertainty of atom positions, allowing 

interactive exploration. We show the effectiveness of our approach by applying it to multiple real-world 

datasets and gathering user feedback. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

The important role of visualization in molecular biology has 

een outlined by Olson et al. [1] and is applied to many tasks 

uch as folding prediction, detection of active sites, or structural 

xamination. Several approaches have been proposed in this 

rea [2] in the last decades and are available in a variety of 

pen-source tools, making visualization a state-of-the-art tool 

n biochemical applications. Molecular data can originate from a 

ariety of sources, such as X-ray crystallography, Nuclear Magnetic 

esonance Spectroscopy (NMR), Cryogenic electron microscopy 

Cryo-EM), or atomic simulations. Due to the experimental nature 

f these approaches, several types of uncertainty are embedded in 

he acquired data which mostly results in positional uncertainty 

f the captured molecular structures. 

This uncertainty affects the decision-making process in visual 

nalytics tasks and needs to be visually communicated, as shown 

y Sacha et al. [3] . This especially applies to molecular data as it

s often used for drug development. When considering molecular 
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ata, the origin of uncertainty, the resulting positional variation, 

nd further requirements from the biochemical domain need to be 

onsidered in order to provide uncertainty-aware visualization ap- 

roaches, as shown in Section 2 . As molecular biologists are in- 

reasingly finding it necessary to employ a wide range of compu- 

ational tools in their work, a framework that can be intuitively 

sed, without the need for special training, is an important aspect 

hat needs to be considered when developing novel visualization 

pproaches in this domain. 

So far, molecular visualization approaches often lack the abil- 

ty to communicate uncertainty or, if they are available, they need 

o be included in existing visualization frameworks, as shown 

n Section 3 . In this work, we propose a visualization frame- 

ork for molecular data that is affected by uncertainty. We 

rovide an uncertainty-aware description of atom positions and 

how how this knowledge can be inserted in arbitrary compu- 

ations based on these positions (see Section 4 ). To incorporate 

his knowledge, we propose a multi-view system that is com- 

osed of prominent visualization approaches in molecular biology, 

uch as volumetric visualization, Ramachandran plots, and statis- 

ics views. We adapted each of the visualization approaches such 

hat they are able to visually indicate the positional uncertainty 

f atoms in specific proteins. The linked views are highly inter- 

onnected to provide user interaction for exploratory tasks (see 

ection 5 ). 
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Fig. 1. General setup of a protein. The backbone (bold lines) are composed of re- 

peating CCN-Atoms of amino acid residues, where each residue has an R-group at- 

tached to it. 

b

h

S

2

2

T

a

p

d

p

r

e

t

w

C

a

c

m

i

t

r

w

2

X

s

p

t

l

w

r

m

p

t

p

m

d

o

e

h

a

a

r

t

t

t

p

u

c

c

e

a

r

s

i

d

d

o

t

t

e

a

s

c

a

f

t

t

i

u

d

i

i

t

2

a

w

L

u

fi

w

l

e

t

e

e

H

T

i

l

t

l

a

Therefore, this paper contributes: 

• Uncertainty-aware description of proteins and requirements for 

their visualization 

• Uncertainty-aware visual analytics framework for protein struc- 

tures and their properties 

We show the effectiveness of the presented framework 

y applying it to real-world molecular data and demonstrate 

ow the uncertainty-aware visualization approaches perform (see 

ection 6 ). Our results will be discussed in Section 7 . 

. The role of uncertainty in molecular data 

.1. Biochemical basics 

Proteins are the molecular machinery of biological systems. 

hey are among the most abundant of biological macromolecules 

nd undertake a diversity of roles in living systems. Structurally, 

roteins consist of polymers (chains) of amino acids. There are 20 

ifferent amino acids typically found in human proteins. A single 

rotein can consist of one or more amino acid chains, typically 

anging in length from a few hundred to several thousand single 

ntities. We would like to refer to the introduction to proteins and 

heir structure by Buxbaum [4] . 

Fig. 1 shows that a protein contains a backbone that forms 

hen amino acids bind together. This backbone is a repetition of 

 

α
−1 

, C −1 , N and C α chains. The connections between amino acids 

llow for two rotational angles along with covalent bonds between 

onnected amino acids. Such angles are called dihedral angles, 

eaning the angle between two planes spanned by four neighbor- 

ng atoms, such that the planes intersect along the line between 

he two middle atoms. The two dihedral angles of each amino acid 

esidue, typically referred to as φ and ψ , allow proteins to adopt a 

ide variety of three-dimensional structures. 

.2. Uncertainty in biochemical data 

Modern methods for protein structure determination, including 

-ray crystallography, Cryo-EM, and nuclear magnetic resonance 

pectroscopy, can provide three-dimensional structures of soluble 

olypeptides with high confidence. The resolution of these struc- 

ures is sufficiently high that the location of individual protein and 

igand atoms can, in many cases, be determined with precision to 

ithin a few angstroms. There are several sources of uncertainty 

elated to these atomic positions. Proteins are not monolithic, rigid 

olecules [5] . Even within the context of protein crystals, local 

rotein regions are subject to thermal mobility to differing ex- 

ents [6] . 

Intrinsic disorder and local mobility have been identified as im- 

ortant factors in protein ligand-binding and allosteric functional 

echanisms [7–9] . A variety of computational methods have been 
294 
eveloped for the prediction of intrinsic disorder in proteins based 

n structural and sequence constraints [10–12] , and at least one 

xperimental method for the characterization of intrinsic disorder 

as been proposed [13] . 

In X-ray crystallography experiments, structural uncertainty 

rises from several sources. Thermal-related mobility of backbone 

nd side-chain atoms within the crystal structure lead to a blur- 

ing effect on the electron density maps induced by x-ray diffrac- 

ion. Additionally, the nature of the crystallization process can lead 

o multiple structural variants of a protein within a single crys- 

al, possibly leading to one or more alternative locations for each 

rotein atom. While resolving a three-dimensional structure, this 

ncertainty is captured in the B-Factor (thermal mobility) and oc- 

upancy terms for each atom. In practice, the occupancy is often 

onstrained to a value of 1.0 while the B-Factor term is used to 

xpress the overall structural uncertainty of the atom [14,15] . 

Both X-ray crystallography and Cryo-EM experiments gener- 

lly include one or more computational modeling steps. For X- 

ay structures, this step involves minimization of unexplained ob- 

erved electron densities. For Cryo-EM experiments, the model- 

ng involves automated or manual groping and alignment of two- 

imensional particle images, followed by the calculation of a three- 

imensional map from the aligned images. In both cases, artifacts 

f the modeling process can contribute additional uncertainty to 

he resulting three-dimensional structure. 

For NMR-spectroscopy, structural constraints are captured 

hrough the NMR experiment, and a number of structural mod- 

ls consistent with those constraints are generated. In this case, an 

tom’s structural uncertainty is related to the variability of its po- 

ition across the resulting model set. 

It is important to note that not all conformational uncertainty 

an be captured and visualized. In X-ray crystallography, for ex- 

mple, the observed proteins may adopt a non-native structure to 

acilitate the formation of a crystal lattice. The difference between 

he native structure and the crystal structure is not known and is 

hus not captured in the experimental data. 

As experimental methods for observing the structure of biolog- 

cal macromolecules have continued to advance, many sources of 

ncertainty in the resulting molecular models remain. A clear un- 

erstanding of variability and uncertainty in protein structure is 

mportant to biochemists in a wide variety of scientific contexts 

ncluding cognizant drug design, docking, ligand screening, struc- 

ural homology modeling, protein function assessment, and more. 

.3. Requirements for uncertainty-aware protein visualization 

Based on the previous state-of-the-art analysis and application 

nalysis, we are able to determine a list of requirements, which 

ill be presented in the following. We followed the suggestion of 

am et al. [16] where interviews were described as a proper tool to 

nderstand the need of users. Here, we used the requirements de- 

ned by Gillmann et al. [17] that are formulated to promote real- 

orld use of novel visualization approaches. The list contains 16 

ow-level requirements which are sorted into 5 categories (usability, 

ffectiveness, correctness, flexibility, and intuitiveness). We showed 

he list to a domain expert from biochemistry and a visualization 

xpert to cover both views on the proposed topic. First, we let both 

xperts express the importance of each requirement to be fulfilled. 

ere, a Likert scale was used (1 unimportant, 5 very important). 

he results can be found in Table 1 . 

It can be observed that avoidance of clutter, uncertainty visual- 

zation, different use cases, interactivity, and ease of use are high- 

ighted as important by both experts. Further, interactivity and use 

ime efficiency are also listed as very important or important by at 

east one of the experts. As these requirements are rather general 

nd low-level, we have used them to derive high-level requirements , 



R.G.C. Maack, M.L. Raymer, T. Wischgoll et al. Computers & Graphics 98 (2021) 293–305 

Table 1 

User evaluation performed for the presented approach. 16 Low level requirements have been evaluated with a Likert scale from 1 to 5 in their importance from two experts 

(visualization and domain). High ratings in importance are highlighted in gray. Our approach has been evaluated against two known approaches by each of the experts. The 

results are color-coded in red (if our approach is rated worse than the known visualization tools), yellow (if our approach is rated better than known visualization tools) and 

green (if our approach was rated better than the known tools). 

Category Requirement Visualization expert Domain expert 

Imp. PyMol Protoshop Our Tool Imp. PyMol VMD Our Tool 

Usability Collaborative 3 4 4 4 3 2 2 3 

Interactivity 4 4 4 4 5 3 3 3 

Avoidance of Clutter 5 4 3 5 4 2 1 4 

Minimized Input Parameters 4 4 4 4 3 2 1 3 

Compatibility 5 4 4 4 3 4 4 2 

Effectiveness Runtime Efficiency 4 3 3 4 2 3 3 3 

Memory Efficiency 4 3 3 4 2 3 3 3 

Use Time Efficiency 4 3 3 4 4 3 3 3 

Correctness Precision 5 4 4 4 3 5 5 5 

Quantification 5 4 4 4 3 4 5 4 

Uncertainty 5 1 1 4 5 2 2 5 

Flexibility Use Cases 5 4 4 5 4 3 4 3 

Different Datasets 5 4 4 4 4 3 4 4 

Intuitiveness Feedback Loop 5 4 4 5 3 3 3 3 

Easy to use 5 4 3 5 4 3 1 3 

No background knowledge 5 4 3 4 2 3 1 3 

Weighted Average 3.63 3.44 4.25 3.00 2.81 3.38 
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hich can be found in the following. The list is further maintained 

y the requirements to achieve uncertainty-awareness in visual an- 

lytics tasks developed by Sacha et al. [3] . 

R1: Visualization of positional uncertainty . As the captured 

osition of atoms in a protein can have a huge impact on the com- 

utation of properties of the considered protein, the propagation 

f these uncertainties is required. Here, every computational step 

ased on atom positions needs to be adapted according to the un- 

erlying uncertainty captured or computed for each atom [18] . 

R2: Integration into known visualizations . There exist a con- 

ensus of visualization techniques that are suitable in the biochem- 

cal domain [2] . These visualizations have been proven to fulfill 

he requirements of molecular visualization. A visual representa- 

ion that includes uncertainty information should be an extension 

f known visualization paradigms. 

R3: Avoidance of visual clutter . Visual clutter, in the sense of 

his application, refers to the numerous occlusion of objects or in- 

ormation by overlying objects, resulting in a tangled visualization. 

s many atoms are displayed in a 3D scene, potentially even dis- 

laying the superposition of various protein models at the same 

ime, summarizing the available information is an important step 

o communicate the available data in a compressed manner. A suit- 

ble visualization strategy should reduce visual clutter in full mea- 

ure to allow the user to understand the outline of the dataset. 

R4: Interactive visualization framework . As the visualization 

f proteins usually results in a three-dimensional object, users 

eed to be able to explore the data utilizing suitable interaction 

aradigms [17] . 

. Related work 

In this section, we attempt to provide a summary of related 

ork in terms of uncertainty-aware molecular visualization ap- 

roaches as well as open-source frameworks that implement these 

pproaches. 

.1. Uncertainty-aware protein visualization 

In the field of visualization, the inclusion of uncertainty was 

lassified as one of the most important research problems by 

ohnson [19] , as it cannot be implemented right away. Brodlie 

t al. [20] , as well as Potter et al. [21] , divided uncertainty visu-
295 
lization challenges using the dimension of their data and the di- 

ension of data points. Here, we obtain a valuable starting point 

s we can consider molecular data as scalar data. 

Molecule and protein visualizations are widely used. Therefore, 

 large number of projects have been addressing issues of bio- 

hemical, pharmaceutical, and medical researchers as well as their 

ndustry members. Kozlíková et al. [2] summarized the variety of 

isualization options in a state-of-the-art analysis. Here, the se- 

ection of a proper uncertainty representation was named as one 

f the main challenges [22] . In the following, the most impor- 

ant uncertainty-aware protein visualization strategies related to 

ur approach are summarized. 

Rheingans and Joshi [23] used various family members of 

olecules holding the same atoms and bonds. They either su- 

erimpose the members showing regions of high uncertainty 

y large disagreement between the confirmation states or show 

so-surfaces using Gaussian splatting to indicate the likelihood of 

n atom to be located at a set location. Although this provides a 

isualization of all potential protein positions, it introduces visual 

lutter in the resulting visualization. Instead, the reduction of vi- 

ual clutter in these visualizations is focused on in this manuscript. 

Rasheed et al. [24] utilized volume rendering to show the per 

oxel uncertainty computed across an ensemble of slightly per- 

urbed samples of the same molecule. It showed that the B-Factor 

ncertainty correlates with this distribution function uncertainty. 

noll et al. [25] provided a volume rendered uncertainty classifica- 

ion based on electron density distributions using 2D transfer func- 

ions, helping to identify interfaces based on chemical bond forces. 

kånberg et al. [26] used volume rendering of spatial distribution 

unctions to visualize the distribution of selected structures over 

nsembles of molecules. 

Schulz et al. [27] presented a model visualizing the uncertainty 

f secondary structure assignments on ribbon diagrams, compar- 

ng various assignment algorithms. In contrast to this work, they 

sed various assignment algorithms as their source of uncertainty 

nstead of the positional uncertainty of atoms. The visualization 

as made more squiggly in areas of high uncertainty instead of 

sing iso-surfaces for the visualization where the original geom- 

try can still be seen. In contrast to this contribution, we aim to 

ocus on the positional variations of atoms in proteins as a source 

f uncertainty while preserving the original shape of the ribbon 

odel. 
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Fig. 2. Uncertainty-aware description of atom positions in a protein using three 

eigenvectors of the standard deviational ellipse. 
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Lee and Varshney [28] created an Uncertainty-aware 3D visu- 

lization of the Solvent Excluded surface using Gaussian distri- 

utions and a fuzzy rendering mode. Even though this approach 

eemed promising, the appearance of the results is comparable to 

lurring the original visualization. 

Sasisekharan [29] developed the usage of dihedral angles to 

escribe polypeptide conformations. This so-called Ramachandran 

lot was used throughout biochemical research quickly [30,31] . An 

ncertainty-aware version of this plot, indicating the variations in 

he dihedral angles, is provided here. 

Maack et al. [32] created an Uncertainty-Aware version of the 

amachandran plot to allow interaction with other components of 

he system while improving the visual appearance. Unfortunately, 

heir model solely focuses on isotropic uncertainty as captured 

y B-Factors. In the presented work, we introduce an anisotropic 

odel of uncertainty for each atom position and extend the Ra- 

achandran plot according to this knowledge. 

.2. Uncertainty-aware protein visualization software 

A major drawback of all presented visualization approaches is 

hat they are rarely used in open-source visualization tools. As Gill- 

ann et al. [33] pointed out, this is a desirable feature in many 

pplications. The protein data bank provides a list of open-source 

isualization tools [34] in general. We used this list and extracted 

he tools that incorporate uncertainty. 

Chimera is an open-source tool for visualizing molecular struc- 

ures [35] . Variations in molecular modeling can be visualized by 

lotting multiple proteins at the same time. Atoms can be ex- 

hanged and a Ramachandran plot can be used to examine the 

ffect of the deviations in atom positions. Here, the resulting visu- 

lization can quickly become cluttered. In the presented approach 

arious protein models are summarized within one visualization, 

uch that the amount of visual clutter is minimized as much as 

ossible. 

Polyview 3D [36] allows for the visualization of multiple po- 

itions of atoms in a protein using animation. Although this pro- 

ides a nice visualization of different protein formations, it is only 

ble to show one formation at a point in time. In contrast to this, 

ur approach aims to show all confirmations simultaneously if re- 

uested while giving users the freedom to watch any formation on 

emand. 

The molecular visualizer iMol [37] uses motion blur to indicate 

ariations in atom positions. Although this shows the uncertainty 

f atom positions, it causes visual clutter if there exist a large num- 

er of blurred areas. 

Swiss PDBViewer [38] represents uncertainty using color- 

oding. Here, atoms or amino acid residues that hold high amounts 

f positional uncertainty are shown in red highlight color. This 

llows visualization of positional uncertainty without introducing 

dditional visual clutter, allowing to show the positional displace- 

ent in space. Instead, the presented approach seeks to provide a 

rade-off between minimal visual clutter and inclusion of potential 

ositions of an atom. 

. Uncertainty-aware description and properties of proteins 

.1. Uncertainty-aware description of molecular data 

As shown in Section 2 , there are several sources of uncertainty 

nd different ways to express them when capturing biochemical 

ata. When not considering uncertainty, atom positions are usually 

reated as fixed Cartesian coordinates. As this ignores the fact that 

toms have a certain range of movement, captured by the B-Factor 

r multiple models of the same protein, the uncertainty of atoms 

ill be described in an isotropic and anisotropic way. 
296 
To make use of the available uncertainty information, we utilize 

n extended description of points that allows the visualization to 

apture positional uncertainty, introduced by Gillmann et al. [39] , 

eferred to as probabilistic points. It describes every point by a 

enter � and three orthogonal vectors σ1 , σ2 , σ3 to describe the 

vailable movement in each direction. Those orthogonal vectors do 

ot have to be axis-aligned and either depend on the distribution 

f the same atom in multiple models or the B-Factor. 

Fig. 2 shows how each atom in a protein can be modeled as a 

robabilistic point. To achieve quantification of uncertainty for the 

nderlying data, two types of uncertainty descriptions for molecu- 

ar data have to be distinguished: isotropic and anisotropic . 

Isotropic model When using a single model with a B-Factor 

alue attached to each atom, the root-mean-square displacement 

an be retrieved from the B-Factor, yielding an isotropic model for 

he atom’s movement. To highlight regions of high or low uncer- 

ainty the normalized B-Factor, or the root-mean-square displace- 

ent, can be utilized to visualize the isotropic model. Normalized 

ncertainty can be scaled using a parameter to visually encode dif- 

erences better. This was highly recommended by our collaborators 

hen working with isotropic models, helping to better distinguish 

ncertainty information. 

In the isotropic case, the measured position of an atom is its 

quilibrium position, used as the center of a probabilistic point 

 �). This means that the model used to create data estimated this 

osition using the most likely conformation simulated. Addition- 

lly, the σ -values of each probabilistic point will be set to the root- 

ean-square displacement ( u ) retrieved from the B-Factor of the 

onsidered atom as shown in Eq. (1) [40] . 

 = 8 π2 u 

2 ⇐⇒ u = 

√ 

B 

8 π2 
(1) 

This is a suitable assignment, as the root-mean-square displace- 

ent captures the available movement of the respective atom in 

ach direction. Although probabilistic points can be modeled with 

nisotropic σ -values in each dimension, the available B-Factor is an 

sotropic description of the positional uncertainty. Therefore, each 

imension gets the same σ -value assigned. In total, � and σ can 

e utilized to define a three-dimensional distribution function that 

s able to output the Gaussian probability density for an atom to 

e located at an arbitrary point in a three-dimensional space. 

Anisotropic model On the other hand, multi-model data, like Nu- 

lear magnetic resonance model ensembles, capture multiple po- 

itions of each atom. This leads to an anisotropic distribution of 

oints around their average. Therefore, an anisotropic approach can 

e used instead. For this purpose, the average position of each 

tom over all available models has to be calculated first. Those av- 

rage positions are needed to find the covariance matrix for each 

tom thereafter. In this way, the distribution of each atom over all 

odels can be described by retrieving the eigenvectors and corre- 

ponding eigenvalues of said covariance matrices using a process 

alled Eigendecomposition . The eigenvector with the biggest eigen- 

alue describes the direction with the most substantial standard 



R.G.C. Maack, M.L. Raymer, T. Wischgoll et al. Computers & Graphics 98 (2021) 293–305 

d

t

t

r

m

u

s  

c  

d

u

4

a

t

i

a

o

r

t

t

c

t

g

c

u

v

s

a

e

a

fi

b

c

g

a

f

a

a  

i

t

b

c

w

5

p

c

w

e

A

d

a

i

t

5

v

u

T

s

T

a

v

a

t

b

c

l

w

o

5

a

e

o

b

a

s

r

r

i

a

s

t

o

g

f

f

e

p

i

t

e

5

s

i

s

f

i

t

fi

w

t

p

r

e

i

h

i

i

5

i

w

h

I

σ

eviation, while the eigenvector with the smallest eigenvalue gives 

he direction of the least substantial standard deviation. This way, 

he normalized eigenvectors can be multiplied with the square 

oot of their eigenvalues to create σ1 , σ2 , σ3 [41] . As the covariance 

atrix is symmetric, the eigenvectors are orthogonal which can be 

sed to create a Standard Deviational Ellipse (SDE) around each �. It 

hould be noted that the SDE is actually no ellipse [42] , but a spe-

ial type of curve [43] . This fact was ignored to better preserve the

irections of the eigenvectors and to save time while computing 

ncertainty hulls. 

.2. Uncertainty-aware computation of dihedral angles 

Besides the challenge that the representation of uncertainty- 

ware proteins varies from the classic representation of a protein, 

he uncertainty-aware description of proteins also adds additional 

nformation to their dihedral angles. This information contains the 

vailable change of said angles induced by the available movement 

f their atoms. In the following, both an isotropic and anisotropic 

epresentations of dihedral angles will be described. 

Isotropic model In the isotropic case, dihedral angles depend on 

he position of four atoms each. If the considered atom uncertain- 

ies describe a lot of movement, the corresponding dihedral angle 

an also strongly change. This should be reflected in the computa- 

ion of the dihedral angle uncertainty. Therefore, the dihedral an- 

le uncertainty consists of the average normalized B-Factors of the 

onsidered atoms. This directly links the angle uncertainty to the 

ncertainty of its atoms, while removing any influence of the angle 

alue itself. Also, the uncertainty can be directly scaled to better 

how highly uncertain regions in the Ramachandran plot. 

Anisotropic model For the computation of dihedral angles using 

nisotropic uncertainty, the distribution of a dihedral angle can be 

xtracted from its distribution over all models. Therefore, the aver- 

ge dihedral angle of each amino acid residue has to be calculated 

rst. Then, the covariance matrix of each amino acid residue can 

e created. It should be noted that the distance metric has to be 

hosen with respect to angles, e.g. the distance between −179 de- 

rees and 179 degrees is 2. Similar to the representation of prob- 

bilistic points, the eigenvectors and eigenvalues can be extracted 

rom the covariance matrices. This way, the average dihedral angle 

nd its distribution can be shown. 

A consistent view about the underlying uncertainty of dihedral 

ngles is given in both cases, as they are handled in a similar fash-

on to their corresponding atoms. The isotropic case directly shows 

he average uncertainty of the underlying atoms, whereas distri- 

utions of atoms or dihedral angles are shown in the anisotropic 

ase. This visually and conceptually connects the 3D visualization 

ith the Ramachandran plot. 

. A Framework for uncertainty-aware visual analytics of 

roteins 

In order to devise a visual analytics tool for researchers in bio- 

hemistry that allows users to review uncertainty in protein data, 

e created an interactive multi-view framework. The framework 

xpands on well-established views in the biochemical community. 

ccording to our domain experts, volume views and Ramachan- 

ran plots are the most important visualization approaches that 

re used in daily tasks. Our system builds upon these two visual- 

zation strategies of proteins while including uncertainty informa- 

ion and allowing interaction. 

.1. Uncertainty-aware volume visualization 

One of the major goals of this work is to enhance the current 

isualization capabilities by including uncertainty information. The 
297 
tilized 3D visualization methodologies are being presented here. 

he inclusion of uncertainty in the field of proteins consists of 

howing possible movements of atoms in the examined protein. 

herefore a mutable transparent isosurface around known visu- 

lizations is used to provide the original and uncertainty-aware 

ersion in a mixed display, shown in Fig. 5 . Using transparency 

nd color controls, the user can blend in the uncertainty informa- 

ion as much as desired. The goal is to create a three-dimensional 

arrier that indicates the potential mobility of protein atoms 

onsidering specific possible freedom of movement. Throughout 

ong discussions with our collaborators in the biochemical domain, 

e determined that uncertainty hulls should be computed based 

n the underlying geometric representations of proteins. 

.1.1. 3D protein visualization types 

The Van der Waals surface visualization draws a sphere for each 

tom with the Van der Waals force of the corresponding chemical 

lement as its radius. The sphere representation is stored as a ge- 

metry which will be referred to as g hereafter. For any geometry, 

(g) is defined as the boundary of g including minimum b(g) min 

nd maximum b(g) max of its points in space. The Ball-and-Stick vi- 

ualization and the Solvent Accessible Surface use either constant 

adii or set it to the Van der Walls radii plus a constant solvent 

adius. 

Apart from these spherical visualizations, the Ribbon model 

s also implemented, drawing a spline curve using the backbone 

toms of a protein as their control polygon. The spline is repre- 

ented by triangles, receiving their uncertainty information from 

he closest backbone atoms. This is needed as the Ribbon model 

nly consists of triangles. To achieve a mapping between a trian- 

le to a B-Factor, the closest atom to each vertex of a triangle is 

ound and their uncertainty information is averaged. This allows 

or sufficiently fast computation, while still retrieving a well-suited 

stimate. Without averaging, one of the vertices would have to be 

icked using the uncertainty information of the closest atom, lead- 

ng to high inaccuracy in some cases. Another approach would be 

o average the positions of triangle vertices, then finding the clos- 

st atom to the middle. 

.1.2. Creating the uncertainty scalar field 

In order to create a surrounding hull, a structure that repre- 

ents the distance of each point in space to the closest primitive 

n an atom representation is required. Although this task can be 

olved analytically, it would result in significant computational ef- 

ort. Also, it would have to be completely recomputed when choos- 

ng a different σ -distance from the geometry. In order to reduce 

he computational effort and to allow isosurface scaling, a scalar 

eld F , using the boundaries mentioned in Section 5.1.1 , is overlaid 

ith the original protein representation. Depending on the resolu- 

ion of this scalar field, we are able to discretize the distance of 

oints in space to the closest point of the protein geometry with 

elatively high accuracy. The distance to the nearest piece of geom- 

try, measured in a directional σ -value, is evaluated for each scalar 

n F . Measuring the distance in units of σ is needed as each atom 

as a different σ -value. This approach presents a clear advantage 

n that the scalar field has to be computed only once, such that 

sosurfaces can be created at any σ -value chosen by the user. 

.1.3. Distance of a voxel to an atom under uncertainty 

To compute the distance of an atom to a voxel center measured 

n a directional σd unit, first, the point of intersection I of an SDE 

ith the line between the voxel center S c and the ellipse center E c 
as to be found. Then, σd is found by taking the distance between 

and E c subtracting the radius. 

= ‖ E c − I‖ − R (2) 
d 
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Fig. 3. Overview over the presented visualization framework. The framework consists of a volume view, Ramachandran plot view and a statistics view. The views are linked 

with a hover interaction methodology. Here, the 1H97 protein is shown. 

Fig. 4. Computation of a scalar field yielding discretized values of differences to a considered geometry in σ scale. The example shows the scalar at the tip of the red vector 

is 6 σ away. 
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σd is a measure of one standard deviation in a direction given 

y E c and S c . Therefore, the distance between E c and S c minus the

adius has to be divided by σd to retrieve the distance between the 

tom and the voxel in units of σd , allowing the user to later scale

he hull to their liking. 

 σ = (‖ S c − E c ‖ − R ) ÷ σd (3) 

In Eqs. (2) and (3) the radius R always has to be subtracted as

t is a property of the representation itself, thus it is not chang- 

ng when a different standard deviation threshold is chosen by the 

ser. It should also be noted that using an isotropic model results 

n a simpler calculation of σd , as the uncertainty is the same in 

ach direction, i.e. σd = σ1 = σ2 = σ3 . This function, calculating the 

istance between voxel center S c and atom center E c , with ellipse 

xis σ1 , σ2 , σ3 and radius R , will be called σ (S c , E c ) for later com-

utations ( Fig. 4 ). 

As described in Section 5.1.1 , the Ribbon model is represented 

y triangles such that the distance computation needs some mod- 

fication. Obviously, the distance of a point to a triangle has to be 
298 
ound first [44] . Then, a sigma value has to be assigned to the tri-

ngle for the isotropic case. In this case, we chose to average the 

ontribution of the closest atoms to each vertex. In the anisotropic 

ase, the center of the triangle is used to represent the triangle as 

he center of an ellipsoid, using the properties of the closest atom 

o that point. 

To extract the uncertainty hull based on the computed field, 

so-surfaces are utilized. As the values in the scalar field repre- 

ent the distance measured in a directional σ distance from the 

ext geometry, a surface (e.g. with distance 1 σ from the geom- 

try) can be created showing the possible mobility of the atoms 

n their equilibrium position under a statistical model. Therefore, 

hanging the iso-surface threshold is a simple operation and can 

e done seamlessly on modern hardware. 

.1.4. Filling the scalar field 

For each of the considered geometries, the boundary of the 

calar field has to be calculated with an as-small-as-possible ex- 

ent, allowing enough space to fit the iso-surface but small enough 
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o keep the resolution high and the size of voxels low. Therefore, 

he boundary b(g) of the original geometry is offset in each direc- 

ion by a constant value ( c) that depends on the expected maxi- 

um offset and maximum uncertainty, resulting in a bounding box 

(F ) of the scalar field F . 

To calculate the scalar field for the sphere visualization, a Kd- 

ree saving all atom positions is generated. This structure allows 

or an efficient search of close points in space. Then, for all voxels 

n a discrete scalar field, created as described above, the n atoms 

losest to its center are saved to a list L , efficiently created by the

forementioned Kd-Tree K. Then, for each atom position on this 

ist, the distance, measured in a directional σ -value, is calculated 

rom the voxel center to the surface of the current representation. 

herefore, the σ (S c , E c ) function, calculating the directional σ dis- 

ance, is used as described in Section 5.1.3 . The lowest σ -distance 

s then assigned to the voxel. 

The number n is the amount of closest atoms that are examined 

o determine the probability of a protein to be located in a spe- 

ific cell of F . It is a value that influences the quality of the scalar

eld, especially if the minimum and maximum σ -values strongly 

eviate throughout the dataset. As the radius and σ -values often 

trongly differ from each other when scanning neighboring atoms, 

his value should be kept at roughly 10% of the atoms. Otherwise, 

he iso-surface may lose its elliptical form when using high scaling 

actors. 

To achieve an uncertainty hull based on the scalar field F , a 

caling factor f is chosen. This factor influences the isovalue at 

hich the isosurface is created. Users can define this factor to 

et the distance in standard deviations (anisotropic) or root mean 

quares (isotropic). In principle, this factor can be set to an arbi- 

rary number greater than zero, but in reality 3 σ usually encap- 

ulates all available variations. Thus higher choices are often not 

eeded when ignoring extreme outliers. Fig. 9 shows an exam- 

le using f = 1 σ, 2 σ, 3 σ , while 3 σ encapsulates even the strongest

utliers of the dataset. 

.1.5. Protein representations 

As shown in Section 2 , there exist several ways to visualize pro- 

eins in 3D. We provide four protein representations: the space- 

lling model, the ball-and-stick model, the ribbon model, and the 

AS (solvent-accessible surface). Fig. 5 provides all four visualiza- 

ion types with a B-Factor color-coding. Each of the visualization 

ypes can be colored according to various features of a protein. This 

elps to encode important aspects of the amino acid residue that 

sers are interested in. Usually, color is set per atom, but as the 

ibbon model does not have single atoms, each vertex is colored 

he way the closest atoms would be colored. In between points the 

olor is being interpolated to receive smooth color-coding through- 

ut the whole surface. 

The resulting uncertainty hull can either be colored consistently 

r according to the relative B-Factor of the closest atom according 

o uncertainty. A consistently colored hull is shown in gray, pre- 

erving the color-coding underneath. Otherwise, the B-Factor color- 

oding (green to red) is used. Additionally, any transparency level 

an be chosen. Fig. 6 compares the gray hull with B-Factor colored 

toms and the color-coded uncertainty hull with gray atoms. 

.2. Uncertainty-aware Ramachandran plot 

A Ramachandran plot displays the distribution of dihedral an- 

les in a protein. Throughout the years, by an empirical analysis 

f such data, many nomenclatures of this plot have been found. 

s scientists nowadays use a lot of different background maps, a 

uitable application does need to support multiple Ramachandran 

omenclatures. Our tool is able to load any nomenclature provided 

n a given format, allowing the user to change the color of regions, 
299 
lso mapping each nomenclature to a color-coding for the 3D vi- 

ualization of any geometry type. 

Building upon the uncertainty-aware Ramachandran plot by 

aack et al. [32] , the creation of isolines in the isotropic case 

orks similar to the isosurface creation for 3D geometries. There- 

ore a 2D scalar field is being created, filling it with to the near- 

st dihedral angle combination while considering its uncertainty 

n the φ and ψ direction, called phiu and psiu . Each point of the 

ataset is modeled as an ellipse with (φ, ψ) as its center and 

 phiu , psiu ) as its axis (distance to the center in φ and ψ direc-

ion). In the end, the marching squares algorithm implemented in 

TK creates the isolines at a distance of 1 to directly draw the el- 

ipses, removing intersecting parts. As the ellipses do not visually 

lutter the image in any way, they are always shown. An example 

s provided in Fig. 3 . 

In the anisotropic case, the distribution of each dihedral angle 

ver all models is shown. As described in Section 4.2 , the average 

ihedral angles, eigenvectors and eigenvalues are used to display 

verage positions and uncertainty of these positions. The average 

ihedral angles are shown as points on the plot while displaying 

he eigenvectors and eigenvalues as non-axis aligned ellipses us- 

ng the eigenvectors for directions and the eigenvalues for scaling 

f each direction. Similar to the isotropic case, intersections are 

mitted using a scalar field and the marching squares algorithm. 

ig. 9 shows this using the 1G03 dataset. 

.3. Uncertainty-aware statistics view 

Besides the volume and Ramachandran view, biochemists also 

eed to be able to look at the raw data. Therefore, the statistics 

iew is shown next to the Ramachandran plot and the 3D Visual- 

zation, as shown in Fig. 3 . It includes values such as amino acid, 

tom type, and radius. In addition, we provide the amount of un- 

ertainty in each atom, showing a raw view of the values captured 

or each atom and residue. Here, two different modes are available. 

If no amino acid residue is selected, the detail view shows a 

umber of important features of the dataset, like the ID code, a 

nique identifier of the Protein Database, and uncertainty informa- 

ion. To be able to correlate B-Factors with each other, a reference 

s needed. Here, the B-Factor range and its average value are be- 

ng displayed. The same is provided for the averaged B-Factors of 

he amino acid residues, while it should be noted that this average 

oes not equally consider all atoms, as amino acids have different 

mounts of atoms in them. For the analysis of dihedral angle un- 

ertainty, their uncertainty range and average are also provided. 

When an amino acid residue is being picked by the user, the 

etail view changes to an elaborate display for the amino acid 

esidue and its atoms. General information like its ID and type 

f amino acid is provided next to the dihedral angles, including 

heir uncertainties, average B-Factor, Ramachandran region, and 

econdary structure type. The chain ID and Residue ID might be 

nteresting for identifying certain amino acid residues directly. To 

ive detailed information about the involved atoms, each atom is 

rovided displaying the element, ID, and B-Factor. An example is 

hown in Fig. 3 . 

Normalized B-Factors are often used for comparison [46] , there- 

ore, normalized values for all B-Factors and dihedral angle uncer- 

ainties are provided next to their absolute value in the statistics 

iew. This allows users to get a sense of high and low uncertainty 

n the viewed dataset. 

.4. Interaction 

Our presented system is designed such that it consists of mul- 

iple views that are highly interconnected and linked. 
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Fig. 5. Uncertainty-aware volume visualization of the 1H97 dataset [45] , using different geometries for visualization. a) Sphere visualization. b) Ball-and-Stick visualization. 

c) Solvent Accessible surface visualization. d) Ribbon model visualization. 
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The interaction between the 3D view, the Ramachandran plot, 

nd the detail view is a point-to-show implementation. An exam- 

le can be seen in Fig. 3 . When hovering the cursor over either an

tom in the 3D view or a data point in the Ramachandran plot, 

he corresponding amino acid residue is being shown in the 3D 

iew along with the Ramachandran plot and the detail view. This 

nables a fast correlation of different visual aspects of a protein 

o be examined. The 3D view displays the amino acid residue by 

rawing its atoms as red spheres whereas the Ramachandran plot 

ighlights the corresponding data point with a red disk around it. 

ll important information is provided by the detail view. When de- 

ired, the selection can be fixed to a certain amino acid residue by 

licking on it using the right mouse button. Right-clicking again 
ig. 6. Uncertainty-aware volume visualization of the 1H97 dataset [45] at 35% uncertai

-Factor colored uncertainty hull with gray atoms (b). 

300 
esets the selection and highlights another residue or shows the 

eneral dataset information, depending on the mouse cursor posi- 

ion. Through this mechanism, a set of amino acids can be depicted 

uch that they can be examined in their entirety. 

The uncertainty hull controls are another important feature. 

sers are allowed to toggle the hull on and off, use the relative 

r absolute B-Factors, toggle between the gray and colored hull, 

nd set the transparency of the hull. The transparency is especially 

mportant, as surrounding a geometry with any transparent sur- 

ace always partly blocks the view to some features of the object. 

n this case, the color-coding of the original geometry might be 

arder to see. A transparent hull better preserves the features of 

he original geometry, making it harder to see details of the hull 
nty transparency. Gray uncertainty hull with B-Factor color-coded atoms (a) and 
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tself. An opaque hull shows depth information in a clear way but 

locks the view to the underlying geometry. 

. Results 

In the following section, the presented approach is applied to 

eal-world proteins. They have been selected by a domain scientist 

ho considered them interesting in terms of uncertainty analysis. 

ll use cases are known, as this allows to check if the uncertainty 

isualization indicates the aspects of uncertainty visualization that 

re relevant in the respective case. The datasets were used in con- 

unction with our approach and the findings have been discussed 

ith our collaborator. The presented approach was implemented 

n C++ using the VTK [47] library with the OSPRay [48] rendering 

ackend, using Qt [49] for GUI design. 

.1. Monomeric hemoglobin from the trematode paramphistomum 

piclitum 

As a first example, we present a small but interesting pro- 

ein, to obtain a first understanding of the presented visualiza- 

ion approach. Fasciola is a type of fluke, commonly known as 

iver fluke. It is a parasitic organism that infects the liver tis- 

ue of a wide variety of mammals, including humans, in a con- 

ition known as fascioliasis. Scientists became very interested in 

onomeric hemoglobin (1H97 [45] ) of this organism as it could 

e the key to developing a vaccine against the parasite. 

We use this protein to provide an overview of the available 

isualization approaches. The underlying computational model of 

ncertainty is isotropic as we consider the B-Factors assigned to 

ach atom in the protein originating from the PDB file. Fig. 5 shows 

 variety of uncertainty-aware volume visualization approaches to 

epresent 1H97. The different types of visualization (sphere visu- 

lization, ball-and-stick visualization, solvent accessible surface vi- 

ualization, and ribbon visualization) are color-coded with the re- 

pective B-Factor (green: low B-Factor, red: high B-Factor). In addi- 

ion, we show the uncertainty hull indicating the potential spatial 

isplacement of atoms. Here, we can see that the surface differs 

rom the original visualization when the B-Factor of nearby atoms 

s high. This confirms the computational setup of the presented ap- 

roach. 

Fig. 3 shows the uncertainty-aware Ramachandran plot of 1H97 

n the middle. We can directly see that the computed dihedral an- 

les are in general very stable according to the spatial movement 

f captured atom positions. This can be seen by the relatively nar- 

ow uncertainty bounds around the visualized points which indi- 

ates that the spatial movement of atoms is small. Our collaborator 

onfirmed these findings of our visualization approach. In general, 

ost angles lie in desired areas and the consideration of potential 

hanges in the atom position does not change this impression. 

It can be seen that the proposed visualization approach helps 

o confirm the stability of a protein considering uncertainty infor- 

ation. We also showed throughout this section that a variety of 

isualization approaches can be adapted using our proposed visual 

etaphor of uncertainty hulls. 

.2. Cyclodextrin glycosyltransferase 

The second example is cyclodextrin glycosyltransferase. The ex- 

mple was chosen by our collaborator as the protein is one protein 

e is interested in examining the variability of simulation results. 

his protein is able to produce cyclodextrins from starch, which is 

n important process in the production of drugs, as it helps trans- 

ort certain molecules in an efficient manner. In the presented ex- 

mple, the original cyclodextrin glycosyltransferase (1CGT [50] ) is 

ompared with cyclodextrin glycosyltransferase that is affected by 
301 
 mutagenesis (1CGU [51] ) in the active site. During the process of 

utagenesis, certain amino acids are exchanged, which can affect 

he function of the protein. As the active site of the protein is the 

ain catalyst of a chemical reaction, this part of the protein needs 

urther examination in terms of stability and uncertainty. The data 

s provided as an isotropic model of uncertainty in this example. 

Fig. 7 a shows the cyclodextrin glycosyltransferase (1CGT) with- 

ut mutagenesis using the ball view. Color-coding reflects the area 

n the Ramachandran plot that the respective backbone amino 

cids are located in. We selected an amino acid residue on the 

ctive site to review the thermal stability of the protein. Show- 

ng the uncertainty hull of the protein, it can be seen that the 

ull is displaced equally throughout the three-dimensional space, 

ithout larger outliers in the spatial displacement. Fig. 7 b displays 

he uncertainty-aware Ramachandran plot of 1CGT. Here, it can be 

een that most amino acid residues are located in desirable areas 

f the Ramachandran plot. There exist outliers in the lower-left 

orner, where we figured out that they are not included in the ac- 

ive site of the protein and, therefore, are not of main interest. The 

ncertainty hull around the remaining amino acid residues shows 

hat although spatial displacement of the proteins can be observed, 

ost amino acid residues will not leave the desired areas in the 

amachandran plot. This helps to determine that the current com- 

osition of the protein seems to be stable. Especially when con- 

idering the active site of 1CGT, we can see that all residues are 

ocated in the dark green areas which are stable. 

In contrast to the finding of 1CGT, Fig. 7 c shows 1CGU, a cy- 

lodextrin glycosyltransferase that is affected by mutagenesis. The 

olor scheme, uncertainty hull, and performed selection are identi- 

al to the ones in Fig. 7 c. When reviewing the volume views it can

e seen that the uncertainty hull does not change optically, mean- 

ng that the spatial displacement of the atoms in the protein is not 

ffected by the mutagenesis. On the other hand, we can directly 

ee that the color-coding of several amino acid residues changed 

n the volume view. This means that several amino acid residues 

re now located in another area of the Ramachandran plot in com- 

arison to the original protein. Overall, we can detect more amino 

cid residues that are located in undesirable areas (light yellow). 

hen reviewing the active site (selection made in red), the se- 

ected amino acid residue in the active site is no longer located in 

 stable region (see Fig. 7 d). Although the uncertainty-aware Ra- 

achandran plot represents the spatial displacement of atoms, the 

elected amino acid residue will not be located in a stable area. 

In general, when reviewing the Ramachandran plot of 1CGU, 

e can identify more amino acid residues that are not located in 

 stable area of the Ramachandran plot. This becomes more criti- 

al when considering the uncertainty spheres around each amino 

cid residue in the Ramachandran plot. Here, a variety of amino 

cid residues could leave stable areas when considering the spa- 

ial movement of atoms. Our collaborator from the biochemical do- 

ain supported these findings and highlighted how the visualiza- 

ion identifying this easily. 

Overall, this example shows that 1CGT is a more stable protein 

especially in terms of the active site) than 1CGU. Resulting from 

his, our approach is suitable to understand the stability of proteins 

n direct comparison while considering the uncertainty included in 

ach of the computational models. 

.3. N-terminal domain of the human T-cell leukemia virus capsid 

rotein 

HTLV-I is a virus that binds in the human body and can cause 

eukemia or neural disorders. An important structure that is in- 

olved in this process is the 1G03 protein [52] . The example was 

hosen by our collaborator as it provides large positional uncer- 

ainty that influences the research conducted with this protein. In 
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Fig. 7. Cyclodectrin glycosyltransferase with and without mutagenesis. a) Uncertainty-aware visualization of 1CGT in ball view style containing the uncertainty hull and a 

selection of a peptide on the active site. b) Uncertainty-aware Ramachandran plot of 1CGT with selection highlighted according to a). c) Uncertainty-aware visualization of 

1CGU in ball view style containing the uncertainty hull and a selection of a peptide on the active site. b) Uncertainty-aware Ramachandran plot of 1CGU with selection 

highlighted according to a). The selected amino acid residues in both proteins are identical, considering their ID. 

Fig. 8. 20 Models of 1G03 protein shown with different styles of visualization. a) Superposition of all models as normally used in the biochemical domain. b) Superimposed 

model with 3 σ uncertainty hull. c) Average model. d) Average model with 3 σ uncertainty hull. 
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rder to understand the structure and function of the protein, re- 

earchers aim to synthesize it. The peptide chain that builds this 

rotein is pretty clear but its three-dimensional folding in space 

ay vary according to a variety of factors such as temperature or 

ther binding proteins. In this context, there exist 20 simulations 

hat try to capture the three-dimensional folding process of 1G03. 

Fig. 8 shows different visualization approaches for the 20 mod- 

ls of 1G03. Biochemists usually review these datasets using a su- 

erposition visualization. Although all models can be reviewed at 

he same time, the visualization is very cluttered. Especially inside 

reas, where the depicted models disagree, it is hard to determine 

he different models and how they are located in space, as shown 

n Fig. 8 a). Adding the proposed uncertainty hull helps biochemists 

o examine the potential space where a protein can be located in. 

ig. 8 shows the superposition visualization with the 3 σ uncer- 

ainty hull. Although we still use the superposition models in this 

isualization, we can clearly show the user where proteins can be 

ocated in space. We allow this visualization in the current frame- 

ork in order to provide a mechanism to relate the presented visu- 

lization approach with already existing approaches. Fig. 8 c) shows 

he computed average model of the 1G03 protein. Here, the visu- 

lization is less cluttered as only one model is displayed which is 

omposed of all 20 existing models. This visualization is almost 

ree of visual clutter but reduces the information captured in the 

0 models. Based on the average visualization, we provide the final 

isualization approach that allows us to show the average model in 

ombination with an uncertainty hull ( Fig. 8 d). Here, it can be seen

hat the average model is covered by the 3 σ uncertainty hull. The 

ull helps to indicate areas in the protein that hold high amounts 

f positional uncertainty. As an example, the top region of the pro- 
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ein holds high amounts of uncertainty which is indicated by the 

arge displacement of the uncertainty hull. Other regions, such as 

he center of the protein hold a rather tight uncertainty hull, indi- 

ating a low variability in the underlying models. This shows that 

he presented visualization allows for an easy-to-understand rep- 

esentation of disagreement in computed models of proteins. 

Fig. 9 shows the top part of the 1G03 protein that was iden- 

ified to hold large amounts of positional uncertainty. In this ex- 

mple, the visualization of the protein was changed to a ball vi- 

ualization, indicating the different types of amino acids. Here, we 

re interested in the amino acid TRP. Fig. 9 a) shows that several 

oints are not captured by the uncertainty hull. When increasing 

to 2 ( Fig. 9 b)), most of the existing models are included in the

ncertainty hull. For 3 σ Fig. 9 c), all models are included in the un- 

ertainty hull. The hull indicates the center of the existing distribu- 

ion of amino acids and shows their spread in space. Here, it can 

e directly seen which direction is the most uncertain. Our col- 

aborator confirmed that the visualization correctly indicates this 

istribution, helping him understand the positional uncertainty. 

The example shows that our approach suits understanding the 

ifference in multiple computational models. The number of mod- 

ls is not limited in terms of visual clutter as we are able to reduce

he number of visual primitives using an average model. 

. Discussion 

.1. Check of low-level requirements 

As this project was developed in collaboration with domain sci- 

ntists in the biochemical domain, we continuously included the 
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Fig. 9. Closeup of region in the 1G03 protein with high amounts of uncertainty. a) 1 σ uncertainty hull. b) 2 σ uncertainty hull. c) 3 σ uncertainty hull. d) Uncertainty-aware 

Ramanchandran plot. 
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eedback of the users originating from an informal interview where 

e presented the current status of our research. The visualization 

pproaches are the final version of this continuous review process 

hich was approved by the domain scientists. 

To understand the improvements that the presented approach 

akes, the list of requirements that assisted in generating the re- 

uirements is reused. Here, the experts were asked to rate the pre- 

ented approach against the 16 requirements formulated by Gill- 

ann et al. [17] . The experts were asked to rate two molecule vi-

ualization tools that they frequently use. The visualization expert 

hose PyMol and Protoshop, and the domain expert used PyMol 

nd VMD. Again, a Likert scale was used for the rating (1 require- 

ent is not fulfilled, 5 requirement is absolutely fulfilled). The re- 

ults can be found in Table 1 . The color-coding shows in which cat-

gories, the presented tool was not able to fulfill the requirements 

uch as the remaining tools (red), fulfill the requirements equally 

ood as the remaining tools (yellow), or fulfill the requirements 

etter than the remaining tools. Here, the presented tool shows a 

lear improvement. 

First, the importance of the requirements has been used to cre- 

te a weighted average to rate each tool. The visualization expert 

ated PyMol with a weighted average of 3.65, Protoshop with 3.38, 

nd our approach with 4.27 points. Here, our tool outperforms 

oth tools that were known to the user. On the other hand, the do- 

ain expert rated PyMol with 2.83, VMD with 2.68, and our tool 

ith 3.42. Again, the presented tool outperforms the used tech- 

iques so far. When having a closer look into the ratings of the sin-

le requirements, it can be observed that the visualization expert 

ated 7 requirements with the same points as the known tools. For 

 requirements he rated the presented tool better than the stan- 

ard tools. In addition, the domain expert found one requirement 

hat we were not able to fulfill as well as the standard tools (com- 

atibility). The expert justified this with the further need to pro- 

ote the presented tool as an open-source tool such that it can 
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e used in the biochemical community. For nine requirements, our 

ool was able to perform equally well as the standard tools. Fur- 

her, 6 requirements are fulfilled better in our tool than by the 

ools chosen by our collaborators. This is the first indicator that 

ur tool provides an overall improvement for the visualization of 

rotein data under uncertainty. 

In addition, our collaborators provided us with very motivating 

omments on the approach that we summarize below: 

• “I could use the framework right away. It provides me with the 

most important visualization types that I need ”
• “I like the easy to interpret visualization of the uncertainty in 

all views. It does not require a massive amount of time to learn 

them. ”
• “I would like to encourage you to include this visualization style in 

an already existing visualization framework for biochemical data. ”

We would like to take these comments as the first basis of a 

ser evaluation. Especially the last comment on the integration of 

he tool will form a basis for further development. Here, we aim 

o gather further user feedback when integrating our approaches 

n an already existing framework. 

.2. Check of high-level requirements 

We provided an uncertainty-aware interactive framework for 

rotein visualization. The system was designed by the require- 

ents we agreed on with our domain experts. This work provides 

n uncertainty-aware description of proteins that is able to repre- 

ent anisotropic positional uncertainty. In the case where all di- 

ensions hold the same quantification of uncertainty, the model 

egenerates into an isotropic model. Still, the distributions along 

ne axis are assumed to be equal in both directions. Although this 

ay result in simplifications of atom position distributions that 
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re not equal in both directions, it allows us to propagate the de- 

cribed uncertainty along computational paths. We achieved this 

ropagation for the computation of φ and ψ angles within an 

mino acid residue which reveals important information about the 

tructure of a protein. Although we did not use the propagation 

or further properties that can be computed based on the atoms 

f a protein, the general mathematical setup is not restrictive. 

urther measures such as curvature or quality of surface can be 

omputed in an uncertainty-aware manner within the presented 

ramework (R1). 

The described visualization procedures are integrated into 

tate-of-the-art visualization approaches that are used in the bio- 

hemical domain. We showed that commonly used visualization 

ethods for proteins can be extended using our method. Although 

here exist further representations that we did not show in this 

anuscript, the presented framework allows their inclusion and 

he mathematical setup does not restrict the underlying visual- 

zation approaches. Solvent accessible surfaces and Ramachandran 

lots, as well as other geometric representations, are part of the 

resented visualization framework that was designed in a flexible 

ay, such that further visualization schemes can be included if re- 

uested. We see this as a strong benefit, as biochemists are able 

o use the provided visualization methods without requiring a long 

raining phase (R2). This is possible as the well-known protein rep- 

esentations, simple interaction modalities, and well-ordered con- 

rols create a familiar environment for users of the biochemical do- 

ain. 

The uncertainty in most biochemical datasets results in a large 

umber of potential atom configurations. There exist a variety 

f approaches that aim to superimpose visual representations of 

hese atom configurations resulting in visual clutter. In the pre- 

ented framework we allow for an average visualization of all po- 

ential atom configurations while outlining the potential spatial 

istortion of atoms. This massively reduces visual clutter while 

eeping the information of atom movement (R3). Due to validation 

easons, we also enabled the framework to show the generated un- 

ertainty hull around all potential models. 

An important aspect of a proper visualization approach for the 

iochemical domain is an interactive visualization framework. Of- 

en, multiple views are required to understand the functionality of 

 protein in its entirety. Here, we provide an uncertainty-aware 

isual analytics framework that allows biochemists to freely ex- 

lore protein datasets that are affected by uncertainty (R4). Dur- 

ng the development of the presented visualization approaches, we 

ighly focused on achieving a minimal time-consuming computa- 

ional process in order to avoid waiting times and allow real-time 

nteraction. At this point, we want to highlight that the framework 

ill become available soon, either as a stand-alone solution or as 

art of an already existing molecular visualization tool. 

.3. Further potential applications 

Although we describe a specific topic where visualization ap- 

roaches are applied, we obtained valuable knowledge about the 

evelopment of uncertainty-aware visualization approaches for 

eometry-based visualizations in general. The mathematical setup 

e described is, in general, not restricted to the biochemical do- 

ain and therefore we aim to describe potential further applica- 

ions to create a motivation for further developments. 

Our framework could also be used to understand the interaction 

etween proteins. In biochemical applications, surfaces of proteins 

re compared in order to examine that a ligand is able to bind 

o a protein. Here, our methodology could be beneficial to exam- 

ne potential displacements in atom positions, resulting in possible 

inding sites. 
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Another application beyond chemistry could be ensemble visu- 

lization of geometries in general. This is an important issue in 

any applications such as industrial manufacturing or path com- 

utations in simulations. Here, our visualization approach can be of 

reat benefit in order to examine differences and common grounds 

f geometries in general. 

At last, high-dimensional data analysis is an important topic. 

n high-dimensional data analysis, data points can be affected by 

ncertainty as well. The high-dimensional data points are usually 

implified using dimension reduction applications in order to be 

ble to review these points. When doing this, the uncertainty of 

he original points propagates along with the performed compu- 

ation and needs to be examined in the resulting reduced dataset. 

ur approach could be of benefit to indicate the uncertainty of the 

esulting points. 

. Conclusion and future work 

In this work, we provide an uncertainty-aware interactive 

ramework for protein data. The framework is based on an 

ncertainty-aware description of proteins that allows capturing 

ariations in the position of atoms due to imprecise measurement 

r multiple model computations. This uncertainty can be propa- 

ated in order to provide uncertainty-aware measures of protein 

eometries. Based on this theory, we provide an uncertainty-aware 

ramework that allows domain scientists to review protein datasets 

ffected by uncertainty in their working environment using promi- 

ent visualization approaches that are extended to indicate uncer- 

ainty. The framework is highly interactive to allow for exploration. 

e successfully tested the presented framework using real-world 

atasets. 

As future work, we aim to provide our proposed visualization 

etup as open-source code and include them in molecular visual- 

zation software such as the PDB visualization tool. We also aim to 

onstantly enlarge the set of included visualization types. Also, a 

iew comparing two atoms or amino acid residues, as well as com- 

arisons of the same atom or residue between models, is planned. 
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