
Touch-Enabled Input Devices for
Controlling Virtual Environments

Taylor Edmiston ∗ Adam Golden ∗ Adam Meily ∗

Thomas Wischgoll ∗

∗ Computer Science and Engineering, Wright State University.

Abstract: The benefits of using virtual environment display technology is the familiarity of
the user with the modalities of that environment providing a very intuitive access to models
or data sets represented by using this technology. Various different styles of input devices are
typically used for such virtual environments, ranging from standard game-pads to high-end
commercial devices like an A.R.T. flystick2. These devices work great for operations such as
selection or navigating the scene. Whenever more sophisticated dialog-based input is required,
these devices typically rely on traditional 2D metaphors projected into the virtual environment.
The use of tablet devices can provide a significantly more natural input-paradigm under these
circumstances. This paper describes the deployment of a standard Android tablet device that
interfaces with a virtual environment over the wireless network. The tablet device was tested
using traditional CAVE-type display configurations and wall-type display systems using various
different 3D stereoscopic technology including active stereo and passive stereo.

1. INTRODUCTION

Virtual environment display technology can provide very
intuitive access to models or data sets visualized by the dis-
play system through the use of motion models close to the
real world thereby providing a familiar control metaphor
to the user. In order to allow the user to freely move
around in front of or within the display system wireless
input devices are typically used coupled with a tracking
system to allow the display environment to be aware of
the location of the user and the input devices. This as
well provides very intuitive input modalities, in which a
user can grab parts of the scene and move them around
just like in a real world environment. Due to the lack of
traditional input devices, such as keyboard and mouse,
however, traditional input and selection modalities tend
to be more awkward to use. Many virtual environment
programming environments, such as Oliver Kreylos’ Vrui,
provide tools for selecting items from a menu to change
modalities. In order to do this, a menu pops up within the
virtual environment. This menu is usually located directly
in front of the user as determined via the tracking system.
The user can then use a tracked input device to select
an item from the menu. A wand-like metaphor is used
in which a line extends out of the input device and the
item with which this line intersects is selected. This input
paradigm tends to be slow and awkward for the user to
use which gets even worse when the user is required to
make textual input as every single key would have to be
selected in this way. In order to provide more suitable
input devices for virtual environments, tablet devices can
be used. These devices are relatively small in size and
provide a very intuitive touch-based input paradigm in
which the user can easily make selections or input text
via an on-screen touch keyboard. For this project, an
Android-based Toshiba 7-inch tablet was chosen with a
sleeve that provides an elastic band for one of the user’s

hand to slide through. Hence, the device can be easily
attached to the user’s hand without limiting the user’s
movements in any way. The tablet then connects to the
master node controlling the virtual environment via a
secured wireless network connection. From that point on, it
can exchange any data with the master node. For example,
the master node could initiate a request for input. Instead
of opening up a menu within the virtual environment as
traditionally done, the menu would now pop up on the
tablet from where the user can make a selection via the
touch interface. Similarly, the master node could request a
file to be selected. The tablet would then open a file dialog
box in which the user can browse the directory hierarchy
as found on the master node to identify the required file.
As can be seen from these simple examples, a tablet-based
interface provides a significantly more intuitive interface
that is easier to use as a result of the touch-based input
modalities. This scenario could of course be expanded in
which textual input is required which is handled via the
tablet just as easily. Similarly, the tracking system could be
expanded such that it keeps track of the tablet’s position
and orientation. In that mode, it could completely replace
any other input device. With its touch interface any ar-
rangement and configuration of buttons can be supported
on a tablet making it significantly more versatile than
traditional input devices at the same time. Overall, the use
of a tablet within a virtual environment can increase the
ease of use as well as the versatility of the input modalities
significantly over existing approaches.

2. RELATED WORK

Immersive virtual environments require two major hard-
ware components. First, display technology is required
that allows a user to view in 3D. Second, 3D suitable
input devices are required that do not bind the user to a
certain location but instead allow for maximal freedom of
movement of the user. For the display, there are typically

a few technologies used. Head-mounted displays (HMDs)
(Sutherland [1968], Fisher et al. [1986], Chung et al. [1989])
consist of two small screens mounted into a device that the
user wears similar to a helmet such that the two screens
are placed in front of the user’s eyes. Since the device is
equipped with two individual screens, different images for
the left and right eye can be easily displayed resulting in a
3D effect experienced by the user. One advantage of head-
mounted displays is that some can be used as see-through
devices for augmented reality systems (Rolland and Fuchs
[2000]). HMDs are now migrating into the gaming market
in form of the Oculus Rift, a max-anticipated 110-degree
field-of-view HMD that is now slowly getting available.

Other display types (Cliburn [2004], Pape and Anstey
[2002], Czernuszenko et al. [1997]) rely on glasses that
hide the left image from the right eye and vice versa. This
allows for a majority of displays to be used. Often times
large projection walls are used which can be configured
as a large wall-type display or a CAVE-like environment.
Two different types of glasses are used in combination with
these displays: active and passive. With passive glasses,
polarization is used to ensure that the left image can
only be seen by the left eye and the other way around.
For projection displays, two projectors are typically used
where a polarization filter with different polarization is
placed in front of each projector. The glasses then only let
light pass through that has the appropriate polarization
so that each eye only sees the image generated by one of
the projectors. Nowadays, even some TFT-based monitors
are becoming available that work with passive polarization
glasses.

Active stereo glasses need to be synchronized with the
display in such a way that ensures that the right image
is only seen by the right eye and vice versa. Typically,
the system displays the images for the left and right eye
in an alternating fashion and activates and deactivates
the glasses for the left and right eye in the active stereo
glasses accordingly. The advantage of this type of glasses
is that they work with many different display types, such
as projection displays, CRT screens, or plasma displays.
However, they do not work with many TFT screens since
they, too, use polarization filters for displaying an image
so that the active stereo glasses filter out the light entirely
all the time.

Recently, auto-stereo displays were developed that are
available at reasonable prices that can be used as displays
for virtual environments. The advantage of this type of
display is that it does not require the user to wear any
glasses. Typically, barrier screens are used so that the light
of half of the pixels gets directed more towards the left and
the other half more towards the right. This way, one half
of the pixels are only visible by one eye, whereas the other
half can be seen only by the other eye, assuming the user
is located somewhat centered in front of the display. As a
result, this limits the mobility of the user to some extent.

As input devices, different wand or stylus devices are typ-
ically used. Often times, these are tracked either magnet-
ically or optically to determine their position in 3D space
without the need of any cabling. More recently, standard
game devices are utilized in virtual environments as well
which are wirelessly connected to the computer. Wischgoll

et al. [2005] discuss the advantages of game controllers for
navigation within virtual environments. Dang et al. [2007]
studied the usability of various interaction interfaces,
such as voice, wand, pen, and sketch interfaces. Klochek
and MacKenzie [2006] introduced metrics for measuring
the performance when using game controllers in three-
dimensional environments. Wilson and Agrawala [2006]
presented a technique for entering text using a standard
game controller. MacKenzie [1995] discusses various input
devices ranging from traditional mouse and keyboard to
tracked devices and their properties, such as lag, with rep-
sect to virtual environments. Barfield et al. [1998] tested
joystick and SpaceBall as input device and report that the
type of input device does not have an influence on the
user’s sense of presence within the virtual environment.
Iphones and Ipads can also be used for navigating through
a virtual environment as shown by Kim et al. [2009].
Pakanen et al. [2013] explored different GUI styles for
virtual environments displayed on tablet devices. They
reported that users preferred GUIs that create a secure
and private feeling.

Based on the previously described technology, a visualiza-
tion of a data set can be presented to a user. In order
to navigate through or around a displayed model, the
camera location needs to be modified. In general, a camera
model describes point of view, orientation, aperture angle,
and direction and ratio of motion. A general system for
camera movement based on the specification of position
and orientation of the camera is presented by Drucker
et al. [1992], whereas Gleicher and Witkin [1992] choose
an approach where through-the-lens control by solving for
the time derivatives of the camera parameters is applied.
The concept of walkthroughs in simulated virtual worlds
using a flying metaphor has first been explored by Brooks
Jr. [1986]. Other commonly applied metaphors for navi-
gation in virtual environments (VEs) such as ”eyeball in
hand”, ”scene in hand” and ”flying vehicle control” were
introduced by Ware and Osborne [1990].

Researchers explored the suitability of immersive display
technology for visualization purposes for quite some time.
Unfortunately, the high price tag of most display setups
results in only a few researchers having access to high-
end immersive displays. An overview of the use of virtual
reality technology for visualization can be found in the
work by van Dam et al. [2000] and Brooks Jr. [1999].

The use of tiled displays has significantly increased lately
thanks to prices for display devices coming down. Tiled
displays can be built using projection-based displays, stan-
dard computer monitors, or large LCD panels. Projector-
based tiled displays typically require calibration to make
them appear seamless and uniform across the entire image.
As shown by Brown et al. [2005] this calibration pro-
cess can be automated. Thanks to recent advancements
in graphics cards, namely ATI’s Eyefinity and Nvidia’s
Surround technology, a single graphics card can drive up
to six displays in case of ATI and three when using an
Nvidia graphics card. This allows researchers to build
tiled displays out of commodity off-the-shelf computers
(Nirnimesh et al. [2007]). Thelen et al. [2009] demonstrated
a tiled display wall composed out of 50 LCD panels that
are driven by 25 computers used for large-scale volume
visualization. Renambot et al. [2004] introduced a scalable

environment that can utilize tiled display configurations to
provide a virtual high-resolution framebuffer to an appli-
cation program.

3. DISPLAY SYSTEMS

Commercial systems developed specifically for virtual en-
vironments can be fairly costly with price tags around a
million dollars. An example of such a system is shown in
figure 1, where a visualization of a large-scale vascular
structure consisting of 220 million individual vessel seg-
ments is visualized in a Barco Ispace. The four screens
located on the floor and the three walls are projected on by
Barco Galaxy projectors driven by five computers. There
is one computer dedicated to each projection surface plus
a master node. Each of these computers is equipped with
4 GB of memory, a dual Xeon 2.5 GHz configuration with
an Nvidia Quadro FX 5800. In order to provide a fully
immersive experience, an optical tracking system from
A.R.T. is used for tracking the 3D coordinates of the user’s
head as well as the input device, an A.R.T. flystick2.

Fig. 1. User experiencing the visualization of a large-scale
vascular structure in a Barco I-Space.

Such commercial setups are often cost-prohibitive for
many visualization projects. Hence, more cost-effective
solutions are needed. At the lowest end of the cost spec-
trum there are fishtank VR configurations. However, these
setups only provide a relatively small amount of immersion
due to the limited screen size.

For visualization tasks requiring a larger screen-space, a
passive stereo, single-screen projection system can be used.
The advantage of a passive system is that glasses are inex-
pensive and standard projectors can be utilized keeping
the overall cost at a minimum. Even though there are
3D capable consumer-grade projectors at reasonable cost
available, they typically support 3D at full HD resolution
only at 24 Hz. This is mainly a limitation of the current
HDMI 1.4 standard. This limitation does not apply to a
passive setup since both projectors can run at the standard
60 Hz at full HD resolution, since they do not use 3D
modes on the projector. Combined with passive polariza-
tion filters that are available starting at $35 this results
in a very smooth, flicker-free display. The setup that was

used for testing in this paper uses a rear-projection setup
so that the user does not block any of the projected image.
Since passive stereo is based on polarization, a special
polarization-preserving projection screen is required, such
as the Da-Lite 3D Virtual Black.

For tracking, a very cost-effective setup was chosen based
on Microsoft’s Kinect. The Kinect sensor provides full
6DoF data, albeit the directional information is not overly
accurate. However, the positional data provided by the
Kinect is fairly precise. A dedicated computer running
FAAST Suma et al. [2011] captures the data from the
Kinect sensor and transmits it to the rendering computer
via the VRPN protocol. This provides head tracking and
tracking of an input device, for example a Logitech F710
wireless game-pad. Since the directional information is
not reliable enough, only positional tracking is used in
combination with the input device. However, this still
provides for a very intuitive user-experience with full
immersion. Other promising devices exist, such as the Leap
Motion which is not yet available or the Myo which is on
pre-order.

The described passive stereo rear-projection screen config-
uration provides a comparably low-cost environment with
equipment cost of less than $6,000. In order to keep the
cost low, a custom-built projection stand was designed
consisting of wooden horizontal levels connected vertically
by threaded rods. Figure 2 shows the setup of the pro-
jectors. The two center levels, where the projectors are
sitting on, are very adjustable as they rest on wing nuts
that can slide up and down the threaded rods by simply
turning them. This provides very fine-grained control over
the projected image as all four corners can be adjusted
individually so that the overlap between the left and right
image produced by each of the projectors can be dialed in
very effectively. The linear polarization filters are mounted
at a distance of a few centimeters in front of the lens to
prevent overheating and melting of the filters.

Figure 3 depicts a user in front of the passive projection
screen. The passive stereo glasses with linear polarized
filters that match the ones right in front of the projector
lenses separate the left and right images. Hence, only the
left image is seen with the left eye and the right image

Fig. 2. Set of projectors in a passive stereo configuration
with polarization filters mounted in front of the lens.

is only seen by the right eye, unlike the double images
that appear in the photograph since no polarization filter
was used for taking the picture. The user is tracked by
the Kinect sensor, which is located underneath the screen
where it sits on top of the tracking computer. The tracked
range is rather large ranging from around twelve feet down
to just a couple feet in front of the screen, albeit the
positional data gets somewhat distorted when getting too
close to the screen.

Fig. 3. Tracked user in front of the passive projection
screen with the tracking computer and the Kinect
sensor on top underneath the screen.

Some visualization tasks may require even more immersion
to further embed the user into the data visualized. To
provide a good field of view at fairly high resolutions tiled
display systems can be utilized. Large-screen LCD displays
using LED backlighting are becoming available that have
only little depth to them and some of these displays even
come with very small bezels making them ideal for tiled
display configurations. For example, Samsung’s UA55E
large-format display has only a small bezel of 3mm. To
derive a tiled display configuration using these types of
displays that is close to a traditional CAVE-type display,
27 of these displays can be mounted on an aluminum
framing system. This results in three walls consisting of
a 3×3 tiled configuration per wall (see figurer̃effig:dive).
The overall walkable footprint within the display system
is 12×12 feet2 with a display height of 87 inches. Hence, it
provides a slightly larger area at almost the same height
compared to a typical CAVE configuration. Since no rear-
projection is required the overall footprint of the entire
display with the framing system is only slightly larger
(around 13×13 feet2).

In order to keep the computer setup driving the display
close to a traditional CAVE configuration, four computers
are used. There is one master node that provides login
capabilities and shows a console-type window of the virtual
environment. Three slave computers display content on the
large-format displays, one dedicated to a single wall each.
Obviously, these computers now need to display parts of
the virtual environment on 9 displays. For that, these
computers are equipped with three ATI FirePro V7900
graphics card combined with an ATI S400 sync card to
make sure that all displays show a single image at the exact

Fig. 4. Display infrastructure providing a fully immersive
visualization of a molecular data set.

same time. Three displays are then connected to a single
card using ATI’s Eyefinity. In the current configuration,
there is a dedicated graphics card for each row of displays.
This then allows the system to render at all of those three
displays utilizing the left/right stereo mode provided by
the HDMI 1.4 specification. Note that the full rendering
performance of the graphics cards are retained as there is
only one rendering step required for a row of three displays
and there is a dedicated graphics card available for each
of those rows of displays.

To provide reliable tracking of head position and input
device, NaturalPoint’s OptiTrack optical tracking system
was chosen. since optical tracking requires line of sight
between the cameras and the marker spheres, it is helpful
if the marker spheres extend beyond the head to avoid oc-
clusion. In addition, the number of cameras was increased
to eleven. This ensures that a sufficient amount of marker
spheres is visible at any given point in time with the entire
space in between the displays being covered.

3.1 Visualization in Virtual Environments

In order to create a fully immersive virtual environment,
more is needed than just interactive rendering. First, a
stereo capable display system is needed which can deliver
different images for the left and right eye. Second, a track-
ing system is required to identify the user’s current posi-
tion. Third, a software setup needs to tie all this together
to render images mimicking the user’s point of view in
real time. There are several software packages that assist
in creating virtual environments. Aside from commercial
packages, such as VegaPrime or CAVElib, free software
packages are available as well. Such free software packages
are freeVR Sherman [2008] or VRjuggler Bierbaum et al.
[2001]. The visualization described in this paper is based
on the Vrui toolkit Kreylos [2008] developed by Oliver
Kreylos. Compared to the other freely available software
packages, Vrui offers more support for a variety of input
devices as well as support for multi-threaded and multi-
pipe rendering resulting in better rendering performance
on more complex cluster-based display configurations. Vrui
offers a great deal of flexibility. It can be adapted to

various different types of setups ranging from fishtank
VR to full-scale CAVE-type displays. In fact, the same
binary can be used and based on the hostname of the
computer this binary based on Vrui identifies its settings
from a configuration file to match the display system.
Once the configuration is set up properly, the rendering
algorithm needs to be integrated into the Vrui framework.
This is essentially done by adding the rendering routine
to the display function of a basic Vrui sample program
provided as part of the Vrui distribution following a similar
paradigm than most window-managing libraries.

Vrui runs only on Linux and Mac at this point. Most
tracking software, however, is only available for Windows.
To get around this, a dedicated tracking computer is
usually used that interacts with the tracking device. In
case of the Kinect sensor, the FAAST software developed
at the University of Southern California Suma et al. [2011]
is used. NaturalPoint’s OptiTrack sensors come with their
own proprietary software that is capable of transmitting
the tracking data over the network.

All the display systems described in this paper except
Barco’s Ispace are configured in such a way that the
tracking data gets transmitted via the VRPN protocol for
both the OptiTrack and the Kinect sensors. The Ispace
utilizes A.R.T.’s dtrack protocol in which the tracking
computer actively sends the data to the master node.
VRPN on the other hand is a passive protocol where the
Vrui software requests the tracking data on a regular basis.

Various types of input devices are readily supported by
Vrui. The Ispace uses A.R.T.’s flystick2, where the entire
input data, such as positional information as well as joy-
stick movements and button presses, are transmitted via
the dtrack protocol. All other systems use a Logitech F710
wireless game-pad. If combined with the Kinect, only the
positional information is used when tracking the game-
pad. For the optical tracking, marker spheres are attached
to the game-pad and the input is based on positional as
well as directional information. For example, one of the
joysticks is tied to a forward motion. If directional infor-
mation is available, the forward direction is defined by the
direction in which the game-pad is pointed. When using
the Kinect for tracking, the forward direction is always
fixed pointing horizontally into the screen to account for
the fact that the directional information is not overly reli-
able. The use of a tablet device is not natively supported
by Vrui. Hence, support for tablets as input devices was
added on the client side of the Vrui application.

Displaying content using Vrui is rather straight forward
as it follows a similar approach then most graphics pack-
ages. Any rendering code needs to be implemented in a
display method that Vrui then regularly calls whenever
a redraw is necessary. Since some display configurations
utilize more than one computer, one needs to be a little
careful about using information that is tied directly to
a specific rendering process. For example, when using a
texture such texture has to be uploaded into each graphics
card individually and their identifiers may be different.
However, Vrui provides a mechanism that is capable of
handling such an environment.

So far, frameworks were developed for displaying on the
systems described in this paper that are based on plain

OpenGL, OpenSceneGraph, and VTK. OpenGL is directly
supported in Vrui as it is based on OpenGL itself. Since
OpenSceneGraph and VTK are also based on OpenGL,
these can be integrated into Vrui as well. However, both of
these graphics packages usually rely on handling the win-
dow management and user input themselves. Obviously,
Vrui already takes care of both of those two items. Hence,
a workaround is required that utilizes these graphics pack-
ages but makes them render into an existing OpenGL
context. In case of OpenSceneGraph, this can be done
relatively easily by creating a viewer instance in which the
OpenGL settings defined by Vrui are recreated followed
by a traversal of the scene graph. For this, the current
OpenGL modelview and projection matrices are retrieved
as well as the viewport and directly written into the
OpenScenceGraph viewer’s settings. For VTK, it is slightly
more complicated as it requires the use of multipass ren-
dering. While it does not actually require several render
passes, it uses a vtkRenderPassCollection to force VTK to
render into an existing OpenGL Drawable.

Based on these frameworks, one can benefit from most
software packages that rely on OpenGL, OpenScenegraph,
or VTK. For example, the Delta3D game engine based on
OpenSceneGraph is readily supported by using a variant
of the OpenSceneGraph framework. Figure 4 shows a ren-
dering of a molecular structure based on VTK. Similarly,
one can tie into the additional functionality provided by
VTK for visualization.

Since different frameworks were developed based on VTK
and OpenSceneGraph, a wide variety of applications can
be supported by all the described display configurations.
Obviously, virtual worlds can be created by importing re-
alistic environments. When using OpenScreneGraph, vir-
tual models can, for example, be imported from Google’s
3D Warehouse to create realistic renditions similar to
Google Earth. Such environments are frequently used by
researchers from psychology to study people’s behavior or
use it for training purposes.

4. USER INPUT VIA TABLET DEVICE

The Vrui toolkit already provides mechanisms for input
modalities via pop-up menus and even dialog boxes. Since
in most sophisticated virtual environments the user is
tracked, the system always knows where the user is and
which way he or she is looking. This allows the Vrui toolkit
to place the pop-up menus and dialog boxes in front of the
user within the virtual environment. A laser pointer-like
tool allows the user then to select items from the menu or
within the dialog box similar to a mouse cursor. Hence, this
input metaphor is a blend between 2D mouse-style input
with flat widgets and a 3D input paradigm. As a result,
this may not be as intuitive to the user and depending on
where the menu or dialog box appears and what the size of
it is parts of it may not fall within the display area. This
can make this input mechanism somewhat difficult to use
at times.

In order to remedy this blend of 2D and 3D mechanisms,
truely 2D input devices can be introduced into the vir-
tual environment. Tablets and mobile phones are a great
success thanks in part to their touch-interfaces, making
them very intuitive to use. The touch-sensitive display

surface in fact combines display and input device in the
same area. This ensures that any menu or input dialog
is shown in its entirety on the screen. With the touch-
sensitive interface, selecting entries from a menu or making
changes or selections within a dialog box are very intuitive.

Since the user wears the tablet on the hand at all times
when interacting with the virtual environment, a smaller
7-inch tablet was chosen, namely a Toshiba AT1S5, with
a sleeve that comes with a hand strap so that it can
be attached directly to the user’s hand. The Android
software was developed using Eclipse 3.7.2 (Indigo) with
the Android Development Tools (ADT) version 20.0.3.
The minimal supported version of the Android operating
system is 2.2 (Froyo). The tablet connects directly to a
wireless network to communicate with the virtual environ-
ment using standard network sockets. Any communication
is encoded using XML. This allows the virtual environment
to enable certain dialog elements on the tablet and at the
same time the tablet can send commands and input events
directly back to the virtual environment.

As an example, the tablet allows the user to select a
specific model into the virtual environment. These models
are stored as files on the master node running the virtual
environment. The master node sends the directory struc-
ture and files in the current directory to the tablet where
they are displayed. The user can then make a selection
among those. If a directory gets selected the tablet requests
the list of files for that newly selected directory which are
returned over the network. Once the user selects a file,
the virtual environment opens the model represented by
that file to show it within the virtual environment. In case
more than one computer are used for rendering using a
cluster configuration, the model file needs to be distributed
from the master node to the display nodes. Vrui provides a
multicast mechanism for that purpose in which the master
node can simultaneously send the file name to the other
nodes so that they can open and display the model file
synchronously on all displays involved. Figure 5 shows the
tablet running the software to serve as an input device for
virtual environments. On its display, it lists all files and
directories of the currently selected directory on the server
running the virtual environment. Model files selected will
then appear within the virtual environment similar to
figure 6 running on the tiled display configuration for
virtual environments.

Similarly, other input dialogs as well as menus can be
displayed on the tablet screen from which the user can
select. The position of the device can be incorporated
into the selection process, for example to select points or
objects, since some form of tracking system is typically
used to achieve the immersive effect within the virtual
environment.

The tablet was tested with various different 3D stereo-
scopic technology, including active stereo and passive
stereo (both circular and linear polarization was tested).
The content displayed on the tablet was still visible with
any of the tested 3D glasses.

Fig. 5. Tablet device including attached marker spheres
for tracking showing the current list of files to choose
from.

5. CONCLUSION

This paper demonstrates the utility of using a standard
tablet device for input when using virtual environments.
Instead of integrating input dialogs within the virtual
environment, the traditional 2D display of the tablet
device seems considerably more suitable. The additional
benefit of proving a touch-based input interface makes
performing input commands and changing settings even
easier. Overall, tablet devices can be a very useful addition
to traditional 3D display technology suitable for virtual
environments. Albeit a 7-inch tablet device was used for
testing, the software runs on any Android device that runs
version 2.2 (Froyo) or newer allowing it to run on, for
example, Android phones as well.

6. ACKNOWLEDGMENTS

The authors would like to thank the department of Com-
puter Science and Engineering and the College of Engi-
neering and Computer Science for providing financial sup-
port for this project. The authors gratefully acknowledge
the support of this project by the AFRL DoD Supercom-
puting Resource Center and the DoD HPCMP’s User Pro-
ductivity Enhancement, Technology Transfer, and Train-
ing (PETTT) Program (Contract No: GS04T09DBC0017
through High Performance Technologies, Inc.). The views
and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing

Fig. 6. Display infrastructure providing a fully immersive visualization virtual scenario.

the official policies or endorsements, either expressed or
implied, of U.S. Air Force Research Laboratory or the U.S.
Government.

REFERENCES

Woodrow Barfield, Kevin M. Baird, and Ove J. Bjorne-
seth. Presence in virtual environments as a function of
type of input device and display update rate. Displays,
19(2):91–98, 1998.

A. Bierbaum, C. Just, P. Hartling, K. Meinert, A. Baker,
and C. Cruz-Neira. Vr juggler: A virtual platform
for virtual reality application development. In Virtual
Reality, 2001. Proceedings. IEEE, pages 89–96. IEEE,
2001.

F. Brooks Jr. Walkthrough - A dynamic graphics sys-
tem for simulating virtual buildings. Proceedings SIG-
GRAPH Workshop on Interactive 3D Graphics, pages
9–21, 1986.

F.P. Brooks Jr. What’s real about virtual reality.
IEEE Computer Graphics and Applications, 19(6):16–
27, 1999.

M. Brown, A. Majumder, and R. Yang. Camera-based
calibration techniques for seamless multiprojector dis-
plays. IEEE Transactions on Visualization and Com-
puter Graphics, 11(2):193–206, 2005.

J. C. Chung, M. R. Harris, F. P. Brooks Jr., H. Fuchs,
M. T. Kelley, J. W. Hughes, M. Ouh-Young, C. Che-
ung, R. L. Holloway, and M. Pique. Exploring virtual
worlds with headmounted displays. In Proceedings SPIE
Conference, Non-holographic True Three-Dimensional
Display Technologies, pages 42–52, Jan 1989.

Daniel C. Cliburn. Virtual reality for small colleges. J.
Comput. Small Coll., 19(4):28–38, 2004. ISSN 1937-
4771.

Marek Czernuszenko, Dave Pape, Daniel Sandin, Tom
DeFanti, Gregory L. Dawe, and Maxine D. Brown. The
immersadesk and infinity wall projection-based virtual
reality displays. SIGGRAPH Comput. Graph., 31(2):
46–49, 1997. ISSN 0097-8930.

Nguyen Thong Dang, Monica Tavanti, Ivan Rankin, and
Matthew Cooper. A comparison of different input de-
vices for a 3d environment. In ECCE ’07: Proceedings of
the 14th European conference on Cognitive ergonomics,
pages 153–160, New York, NY, USA, 2007. ACM. ISBN
978-1-84799-849-1.

Steven M. Drucker, Tinsley A. Galyean, and David Zeltzer.
Cinema: a system for procedural camera movements. In
Proceedings of the 1992 symposium on Interactive 3D
graphics, pages 67–70. ACM Press, 1992. ISBN 0-89791-
467-8.

S. Fisher, M. McGreevy, J. Humphries, and W Robinett.
Virtual environment display system. In Workshop on
Interactive 3D Graphics, pages 77–87, 1986.

Michael Gleicher and Andrew Witkin. Through-the-lens
camera control. Computer Graphics (SIGGRAPH ’92
Proceedings), 26(2):331–340, July 1992.

J. Kim, D. Gracanin, K. Matkovic, and F. Quek.
iphone/ipod touch as input devices for navigation in
immersive virtual environments. In Virtual Reality Con-
ference, 2009. VR 2009. IEEE, pages 261–262, 2009.

Chris Klochek and I. Scott MacKenzie. Performance mea-
sures of game controllers in a three-dimensional envi-
ronment. In GI ’06: Proceedings of Graphics Interface
2006, pages 73–79, Toronto, Ont., Canada, Canada,
2006. Canadian Information Processing Society. ISBN
1-56881-308-2.

Oliver Kreylos. Environment-Independent VR Develop-
ment. Lecture Notes in Computer Science, 5358:901–
912, 2008.

I. Scott MacKenzie. Input Devices and Interaction Tech-
niques for Advanced Computing, pages 437–472. Oxford
University Press, 1995.

Nirnimesh, P. Harish, and P. J. Narayanan. Garuda: A
scalable tiled display wall using commodity pcs. IEEE
Transactions on Visualization and Computer Graphics,
13(5):864–877, 2007.

Minna Pakanen, Leena Arhippainen, and Seamus Hickey.
Studying four 3d gui metaphors in virtual environment
in tablet context. visual design and early phase user
experience evaluation. In ACHI 2013, The Sixth Inter-
national Conference on Advances in Computer-Human
Interactions, pages 41–46, 2013.

Dave Pape and Josephine Anstey. Building an affordable
projective, immersive display. In SIGGRAPH ’02: ACM
SIGGRAPH 2002 conference abstracts and applications,
pages 55–55, New York, NY, USA, 2002. ACM. ISBN
1-58113-525-4.

L. Renambot, A. Rao, R. Singh, B. Jeong, N. Kr-
ishnaprasad, V. Vishwanath, V. Chandrasekhar,
N. Schwarz, A. Spale, C. Zhang, et al. Sage: the
scalable adaptive graphics environment. Proceedings of
WACE, 9(23):2004–09, 2004.

Jannick P. Rolland and Henry Fuchs. Optical versus
video see-through head-mounted displays in medical
visualization. Presence, 9(3):287–309, 2000.

B. Sherman. Freevr: Virtual reality integration library,
2008.

E. Suma, B. Lange, A. Rizzo, D. Krum, and M. Bolas.
FAAST: The flexible action and articulated skeleton
toolkit. In IEEE Virtual Reality, pages 247–248, 2011.

I.E. Sutherland. A head-mounted three-dimensional dis-
play. In Proc. the Fall Joint Computer Conference,
pages 757–764, 1968.

Sebastian Thelen, Joerg Meyer, Achim Ebert, and Hans
Hagen. Giga-scale multiresolution volume rendering on
distributed display clusters. In HCIV’09 Proceedings
of the Second IFIP WG 13.7 conference on Human-
computer interaction and visualization, pages 142–162,
2009.

Andries van Dam, Andrew S. Forsberg, David H. Laidlaw,
Joseph J. LaViola, and Rosemary M. Simpson. Immer-
sive vr for scientific visualization: A progress report.
IEEE Computer Graphics and Applications, 20(6):26–
52, 2000.

Colin Ware and Steven Osborne. Exploration and virtual
camera control in virtual three dimensional environ-
ments. Computer Graphics, 24(2):175–183, March 1990.
ISSN 0097-8930.

Andrew D. Wilson and Maneesh Agrawala. Text entry
using a dual joystick game controller. In CHI ’06: Pro-
ceedings of the SIGCHI conference on Human Factors
in computing systems, pages 475–478, New York, NY,
USA, 2006. ACM. ISBN 1-59593-372-7.

Thomas Wischgoll, Elke Moritz, and Joerg Meyer. Navi-
gational aspects of an interactive 3d exploration system
for cardiovascular structures. In IASTED International
Conference on Visualization, Imaging, and Image Pro-
cessing (VIIP 2005), pages 721–726, 2005.

