OpenThinning: Fast 3D Thinning based on Local Neighborhood Lookups

Christina Gillmann
University of Kaiserslautern

Tobias Post*
University of Kaiserslautern

ABSTRACT

3D Thinning is an often required image processing task in order to
perform shape analysis in various applications. For researchers in
these domains, a fast, flexible and easy to access implementation is
required. Open source solutions, as the Insights Segmentation and
Registration Toolkit (ITK), are often used for image processing and
visualization tasks, due to their wide range of provided algorithms.
Unfortunately, ITK’s thinning implementation is computational ex-
pensive and allows solely one specific thinning approach. There-
fore, this work presents OpenThinning, an open source thinning
solution for 3D image data. The implemented algorithm evaluates
a moving local neighborhood to find deletable voxels, according to
different sets of criteria. In order to reduce the computational ef-
fort, all possible local neighborhood setting outputs are stored in
a lookup table. To show the effectiveness of OpenThinning, the
implementation is compared to the performance of the ITK library.

Keywords: 3D-Thinning, Open Source, Lookup Table

1 INTRODUCTION

Image processing tasks occur in various applications as medicine
and mechanical engineering [7]. To understand the shape of differ-
ent objects, centerlines are a common tool. They offer a geometric
and topological representation, which allows further examinations
[11]. To obtain a centerline, thinning is often the first step, where
voxels are successively deleted until a skeleton remains [15]. Un-
fortunately, the properties of a skeleton are not unique and alter
depending on the use case in different application [5].

Independent from the application, skeletons need to fulfill spe-
cific requirements to be suitable for further examinations. First,
skeletons require a one pixel thickness, to be analyzed properly.
Additionally, interesting structures of an image are usually seg-
mented, resulting in a discrete binary mask, which needs to be han-
dled by the thinning algorithm. Furthermore, the thinning result
requires the ability to capture the geometry of the thinned objects
as well as possible. This means, that the skeleton needs to preserve
the length of an object and it needs to be located in the object’s
center. Moreover, the topological properties of the object have to
be retained. This means that, connected components or branches
need to be presented by a skeleton with the same properties. Fi-
nally, as thinning often needs to be computed for various objects, a
fast computation is required. Depending on the application, these
list of properties needs to be extended.

As thinning does not require a user input, an open source so-
lution, that can be easily added to existing projects, is desirable.
Although multiple solutions for open source 3D-Thinning exist
[3, 6,9, 4], they lack the ability to perform a fast thinning indepen-
dent from the required properties of the output skeleton. In contrast
to that, Lee et al. [12] presented a family of thinning algorithms,

*tpost@rhrk.uni-kl.de
fc_gillma@cs.uni-kl.de
*thomas.wischgoll @wright.edu
Shagen@cs.uni-kl.de

Hans Hagen?®
University of Kaiserslautern

Thomas Wischgoll*
Wright State University

that successively removes voxel of an object according to a defined
deletion scheme. One of their presented algorithms is available in
the free ITK [10] library. Although this is an open source solution,
the ITK implementation can be computationally slow and does not
offer the possibility to alter the requirements of the tinning result.

Therefore, this paper presents OpenThinning [13], a fast and ro-
bust implementation of thinning algorithms, presented by Lee et al.
(Section 2). The algorithms remove successively voxels from the
input object by evaluating a moving local neighborhood until the
desired skeleton remains. In order to achieve a fast computation,
all possible neighborhood settings are stored in a lookup table. To
provide skeleton outputs with different properties, the system of-
fers three distinct lookup tables. To show the effectiveness of the
OpenThinning solution, this paper presents a runtime comparison
with the widely used ITK library and demonstrates skeletons ob-
tained with the OpenThinning solution (Section3).

2 OPEN THINNING

In order to incorporate a free, flexible and fast thinning in other
programming frameworks, this section presents the OpenThinning
solution [13]. The free available implementation offers a parallel
thinning approaches that evaluate a moving local neighborhood en-
coded in a lookup table.

2.1 Local Neighborhood Lookup Tables

In order to determine deletable voxels, a moving local neighbor-
hood, as shown in Lee et al.’s approach [12], is used. Therefore, the
work states a family of thinning algorithms that can be utilized to
obtain skeletons fulfilling different properties from an binary image
data. In each thinning algorithm, a list of criteria (see Table 1) is
used to evaluate the moving local neighborhood. Their three sets of
used criteria and the different thinning results will be explained in
the following.

Simple thinning (77), requiring criteria C; — Cy, results in a
skeleton that preserves the object’s geometry and topology, while
neglecting line-like branches.

Instead, the implementation of a medial axis thinning (75),
which additionally preserved the length of an object, requires cri-
teria C; — Cs. In addition to the properties of the simple thinning
algorithm, condition Cs avoids a shortening of line-like structures,
which outputs a medial axis.

To achieve a medial surface thinning (73) as a thinning result,
criteria C; — Cy4 and Cg are required. Criteria Cg verifies, if the ob-
served voxel is embedded in the medial surface or its border. If this
is the case, the voxel is not allowed to be deleted, thereby remaining
the medial surface of the structure.

In the algorithms presented by Lee et al. the moving local neigh-
borhood determines, if a voxel is deletable, by checking the ap-
plied criteria according to their order in Table 1. This evaluation
is performed until either a criteria is not fulfilled (voxel will not be
deleted) or all criteria are fulfilled (voxel will be deleted). Depend-
ing on the criteria, that causes the computation to stop, the runtime
for a local neighborhood evaluation varies. As a result, the runtime
of the approach depends on the presence of slow cases in the input
object, whereas a dependency of the image size is preferred.

As the evaluation output of the moving local neighborhood re-
mains the same in the entire computation of the thinning algorithm,

their result can be computed in advance and stored in a lookup ta-
ble. Based on that, the algorithm does not need to recheck all cri-
teria again during its runtime. Instead it can request the output of
the current neighborhood setting in the lookup table and therefore
requiring an constant time consumption for each voxel evaluation.
To achieve a standardized indexing scheme for arbitrary lookup
tables, the presented method of Post et al. [14] is used as shown
in Figure 2. The table index is calculated by stringing together the
filled (value 1) and not filled voxels (value 0) from the local neigh-
borhood, except for the current voxel value itself. As this value
needs to be checked in the thinning procedure as well, this would
not lead to a reduction of time consumption. In total, the result-
ing lookup table holds 220 entries, storing all possible settings of
a voxel’s local neighborhood. This results in a 8MiB file, that can
be loaded in less then one second. In the OpenThinning solution,
three different lookup tables are available encoding the presented
thinning criteria by Lee et al. . Each of the provided tables can be
used as a basis for the thinning algorithm. Besides the presented
lookup tables, users of OpenThinning can create and use their own
tables if they match the presented index scheme of the lookup table.

2.2 Algorithm

The OpenThinning solution provides an algorithm, that can be uti-
lized to read a dataset in combination with a lookup table. Based
on this input, OpenThinning utilizes an extended version of the pre-
sented algorithm by Post et al. [14], which is shown in the pseu-
docode of Figure 1.

The procedure forms a parallel thinning approach which means,
that multiple voxels are deleted in one iteration. Each iteration con-
sists of 6 subcycles, that differ in the direction, the thinning is per-
formed.

At the beginning of the procedure, the border voxels of the
dataset are duplicated. This avoids special cases for border voxels,
that can slow down the computation. In the algorithm, the neigh-
borhood evaluation is performed solely for voxels of the original
volume. In each subcycle iteration all voxels and their local neigh-
borhoods are evaluated using the lookup table. If the current voxel
can be deleted, it is stored in a list of possible candidates. The vox-
els can not be deleted directly as this would result in an incorrect
amount of removed voxels in one direction. The result would be a
skeleton that is not located in the center of the input structure.

After the list of potential candidates is complete, the algorithm
iteratively rechecks the potential candidates. If the lookup table still
encodes a deletion, the candidate voxel is finally deleted by setting
its value to unfilled. For the rechecks of the remaining potential
candidates, the updated image with the previous deleted voxels is
considered. The procedure is repeated until no voxel can be deleted
in none of the six subcycles. The resulting image holds the skeleton
output of the input dataset according to the used lookup table.

3 RESULTS AND DISCUSSION

In order to show the effectiveness of OpenThinning, this section
presents a comparative study to the widely utilized ITK implemen-
tation. The standard implementation, that is provided in ITK Ver-
sion 4.8 [10, 1] can be applied to a 3D dataset. As the implemented
method performs a single thinning procedure in each layer of the
three-dimensional input image, it can not be guaranteed, that the
connection between the layers is preserved. Instead, the implemen-
tation of the ITK Journal, which uses Lee’s medial axis thinning,
is considered for a comparative study [8]. To obtain fair results,
the algorithm was uncoupled from the ITK framework to provide
an equal datastructure for the tested approaches. In order to com-
plete the study, the simple- and medial axis approaches of Lee et al.
where added to the ITK implementation.

The resulting skeletons can be seen in Figure 3. Therefore, four
datasets (box cross, hollow cube, engine [2] and vessels) are thinned

with the three thinning algorithms of the OpenThinning solution as
well as the ITK implementation. As the results show (see Table 4),
the OpenThinning solution is able to perform thinning tasks up to
twice as fast as the approach of Lee et al. . The factor of speedup is
highly depending of the relative amount of hard to evaluate neigh-
borhoods, where Lee et al’s approach needs to check various criteria
and the lookup table approach only requires a constant evaluation
time.

The implemented thinning algorithm in OpenThinning outputs
a correct result, that fulfills the criteria encoded in the lookup ta-
bles. The system is designed flexible, as arbitrary lookup tables can
be loaded, if they provide the described file format. OpenThinning
contains three lookup tables for simple thinning, medial axis thin-
ning [13] and medial surface thinning. As Lee et al. showed, their
criteria are able to delete the maximum number of voxels in each
iteration correctly. Their implementation in combination with the
presented lookup table approach lead to a minimal computational
effort, if a parallel algorithm design is not considered.

4 CONCLUSION

This paper presents OpenThinning, an open source thinning solu-
tion using a local moving neighborhood evaluation implemented
as lookup tables. The approach is available in an repository for
easy access. The system provides three different lookup tables, that
can be used to thin binary images and obtain skeletons with differ-
ent properties. Through the presented lookup table approach and
the implemented thinning procedure of Lee et al., which requires a
minimal number of iterations, the underlying computation is accel-
erated.

As future work, a graphical interface is planned, that allows users
to drag and drop their input files into the openThinning solution.

REFERENCES

[1] itk::binarythinningimagefilter. http://www.itk.org/Doxygen/. Ac-
cessed: 2016-02-03.

[2] Volovis.org. "http://volvis.org”. Accessed: 2016-03-09.

[3] I. Arganda-Carreras. Imagej. “http://imagej.net/Skeletonize3D”, July
2016.

[4] D. Bloomberg. Laptonica. "http://www.leptonica.com/”, July 2016.

[5] N. D. Cornea, D. Silver, and P. Min. Curve-skeleton properties, ap-
plications, and algorithms. IEEE Transactions on Visualization and
Computer Graphics, 13(3):530-548, May 2007.

[6] GitHub. Zhang-suen thinning. “https://github.com/bsdnoobz/zhang-
suen-thinning”, July 2016.

[7] R.C. Gonzalez and R. E. Woods. Digital Image Processing (3rd Edi-
tion). Prentice-Hall, Inc., 2006.

[8] H. Homann. Implementation of a 3d thinning algorithm.
http://hdl.handle.net/1926/1292, 10 2007.

[9] http:/freesourcecode.net. Stentiford thinning algorithm in matlab.
“http://freesourcecode.net/”, July 2016.

[10] H.]J.Johnson, M. McCormick, L. Ibafiez, and T. I. S. Consortium. The
ITK Software Guide. Kitware, Inc., third edition, 2013. In press.

[11] C. Kirbas and F. Quek. Vessel extraction techniques and algorithms:
a survey. In Bioinformatics and Bioengineering, 2003. Proceedings.
Third IEEE Symposium on, pages 238-245, 2003.

[12] T.-C. Lee, R. L. Kashyap, and C.-N. Chu. Building skeleton mod-
els via 3-d medial surface/axis thinning algorithms. CVGIP: Graph.
Models Image Process., 56(6):462—478, 1994.

[13] T. Post and C. Gillmann. Openthinning.
“https://github.com/christinagillmann/OpenThinning”, July 2016.

[14] T. Post, C. Gillmann, T. Wischgoll, and H. Hagen. Fast 3d thinning
of medical image data based on local neighborhood lookups. The
Eurographics Association, 2016.

[15] B. Preim and C. P. Botha. Visual Computing for Medicine: Theory,
Algorithms, and Applications. Morgan Kaufmann Publishers Inc., 2
edition, 2013.

function THINNING(Image , LookupTable)
repeat

modified + false

for d € {up. down. right. left, forward, backward} do
Candidates < 0
for v € Voxels do

Image(v) = 1 A
if Image(v—d) 0 A then
LookupTable(v) 1

Candidates <— Candidates U {v}
end if
end for
for c € Candidates do
if LookupTable(c) = 1 then
Image(c) < 0
modified < true
end if
end for
end for
until ~modified
end function

Figure 1: Extended pseudocode for thinning, using arbitrary lookup
tables, as shown in the work of Post et al. [14]. As a new feature,
OpenThinning offers an implementation of this code as well as three
different lookup tables, that can be used.

ACKNOWLEDGEMENTS

This research was funded by the "German Research Foundation”
(DFG) within the IRTG 2057 “’Physical Modeling for Virtual Man-
ufacturing Systems and Processes”. We would like to thank Ghas-
san Kassabs research team for providing their datasets used in this
study.

[# [Formula [Usage [Intuition

The current voxel has to be
filled.

C | fv)=1 n, 1N T

G | fhv=d)=0 T, T», Tz | Considering the current direc-
tion of thinning, the predeces-
sor of the voxel is not allowed

to be filled.

C; | E(v)=0 T, T, Tz The Euler characterists of a
point needs to be unchanged.
This means, that the geometric
properties of the thinned object

are preserved

Cy | S(v)=1 T, T, Tz The considered point needs to
be a simple point. This means,
that removing this point, re-

mains the objects topology.

Cs {n:neN(v)A | T
fn)=1}>1

The number of neighbors in a
local neighborhood of a point
needs to be higher than one.
This prevents shortening line-
like structures and therefore
keep their length.

Co | Vi € {1.8] :
Index(N?(v)) €
(153,165,170,
195,204,240} v
IN?(v) <3

T3 The voxel is not allowed to
be a medial surface point or
the edge of a medial surface
while considering the octants
in the voxel neighborhood, as
shown in Lee et al’s work. The
method presents a lookup ta-
ble deciding weather a voxel
belongs to the medial surface
or not. The list of matching
cases (identified by their num-
ber) was extended to obtain
correct results.

Table 1: Thinning criteria of the presented lookup tables and their
intuition. The different use of these criteria alters the output of the
thinning result.

[[[| Medial Surface Thinning | Medial Axis Thinning | Simple Thinning

Dataset | Size Voxel # Iter- | Voxel | ITK LUT # Iter- | Voxel | ITK LUT # Iter- | Voxel | ITK LUT
Ratio ations | Ratio | Thin- Thin- ations | Ratio Thin- | Thin- || ations | Ratio Thin- | Thin-
[%] (%] ning ning [%] ning | ning [%] ning | ning
[s] [s] [s] [s] [s] [s]
Box 512 x | 23.14 150 0.493 | 3306 | 1954 125 0.001 | 275.5 | 168.9 || 138 0.000 | 335.3 | 194.3
Cross 512 x 0007
512
Hollow | 513 x | 15.15 41 0.442 | 95.1 58.3 38 0.017 | 85.2 52.2 38 0.004 | 81.8 52.2
Cube 513 x
513
Engine | 256 x | 12.60 16 1.309 | 3.24 1.78 24 0.125 | 3.98 2.32 23 0.027 | 3.53 2.14
256 x
128
Vessels | 512 x | 0.4997 11 0.070 | 8.02 5.09 7 0.016 | 4.98 3.29 104 0.002 | 72.9 45.6
512 x
199

Table 2: Comparison of the OpenThinning approach with the ITK journal implementation. The ITK solution for medial axis thinning was decoupled
from the general ITK framework to allow a fair comparison to the OpenThinning solution. It was possible to alter the implementation of the used
criteria to allow simple- and medial surface thinning as presented by Lee et al. . As a result, all algorithms can be compared to the OpenThinning
solution. The results show, that the lookup table approach implemented in OpenThinning is able to perform thinning tasks up to twice as fast as
the implementation of Lee et al.s approach.

o PSR o 0000 I I T 0T . o

Y . o 1oo H 00010011110100111110111000 | +1
. 111 6 00010011110100111110111001 | : 0

] - e 101 F 00010011110100111110111010 | =1
- : E—— P e ol [0/ E 00010011110100111110111011 | : 0
. .) 00010011110100111110111100 | : 0

L ¢ 4 M 1] D 00010011110100111110111101 | +1
v n Z . . 6 11fe] C 00010011110100111110111110 | =1
¥ & | : |/ . 111 B 00010011110100111110111111 | @
Mo W N Yy 011 A 00010011110100111111000000 | :1
N [~ X 00010011110100111111000001 | :1
N\ RS T T Tt T i T 0100111101001 11111000011] 11

4 . 1, - '
wSTT \ (0/0]0]1]0]0|1]1/1]1/0|1/0/0[1]1]1/1]1]0[1]1]1]0/1 /1], 0001001 11101001 11111000100 | :1

Lookup Index e

Figure 2: Scheme for neighborhood encoding with example output as shown in the work of Post et al. [14]. The moving local neighborhood
evaluates the single voxels of the volume by encoding its neighborhood setting to a lookup index. This index can be used to determine weather
a voxel needs to be deleted or not.

Figure 3: Example datasets and their thinning results. From top to bottom: Box cross dataset, hollow cube, machine engine and vessels. Left
to right: original object, medial surface thinning, medial axis thinning and simple thinning. The results show, how the different encoded criteria
output altering thinning results. According to the special needs in different applications, the table can be selected. As these examples show,
medial surface thinning is beneficial for plate lite structures (e.g. engine), wheres medial axis thinning shows good results for tube like structures

(e.g. vessels).

