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Abstract

Closed streamlines are a missing part in most visu-
alizations of vector field topology. In this paper, we
propose a method which detects closed streamlines
in a time-dependent two-dimensional flow and in-
vestigates the behavior of these closed streamlines
over time. We search in all timesteps for closed
streamlines and connect them to each other in tem-
poral order to get a tube shaped visualization. As
a starting point for our investigation we look for
changes of the type of critical points that lead to the
creation or vanishing of closed streamlines (Hopf
bifurcation). We follow the resulting limit cycle
over time. In addition, changes of the topological
skeleton, built by critical points and separatrices,
are considered which may start or terminate the life
of a closed streamline.

1 Introduction

An intuitive and often used method for vector field
visualization is the calculation of streamlines. They
can be used to create the so called topological skele-
ton. This is a graph which connects the critical
points, where the vector field is zero, with stream-
lines called separatrices. If this technique is used in
turbulent fields, one encounters often the problem
of closed streamlines. The difficulty with standard
integration methods is that streamlines approaching
a closed curve cycle around that curve without ever
approaching a critical point or the boundary. Usu-
ally, one uses a stopping criterion like elapsed time
or number of integration steps to prevent infinite
loops. But we are interested in the exact location
of the closed streamlines. Therefore such a vague
criterion does not fit our needs. For this reason we
developed an algorithm [16] that uses the underly-

ing grid to check if the same cell is entered again
while integrating the streamline: this results in a cy-
cle of cells. In that case, the algorithm determines
if the streamline can leave this cell cycle or not. If it
does not leave it is proven that there exists a closed
streamline inside the cell cycle if there is no critical
point inside the involved cells. This proof is based
on the famous Poincaré-Bendixson-theorem in dy-
namical systems theory.

In time-dependent planar flows it is possible to
track the paths of the critical points and draw the
separatrices as surfaces that vary when time prop-
agates [13]. When following one particular criti-
cal point, for instance a sink, this critical point may
switch its type and becomes a source. This kind of
structural change is called Hopf bifurcation. This is
only possible if there emerges or vanishes a closed
streamline in the surrounding of the critical point.
Then, the separatrix does not reach the critical point
anymore but ends at the closed streamline instead as
shown in figure 1.

For a better understanding of these essential
topological properties of time dependant vector
fields we investigate the evolution of closed stream-
lines over time. We will describe two different types
of structural changes (bifurcations) which start or
terminate the life cycle of a closed streamline: one
is the Hopf bifurcation mentioned above. The other
structural change is the blue sky in 2D bifurcation
where a saddle gets connected to itself by a stream-
line. This bifurcation is called global because it
does not involve a change of a critical point but
a change of the connectivity of separatrices in the
topological skeleton.

The evolution of closed streamlines in planar
flows is visualized by a third dimension represent-
ing time. We can show the evolution using a
tube that interpolates a closed streamline at dif-
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ferent timesteps. This technique was inspired by
The Visual Mathematics Library by Abraham and
Shaw [1] which facilitates a great way to understand
dynamics by the use of discerning sketches.

In the next section we summarize previous work.
Afterward, we simmarize the necessary theoretical
background and introduce critical points and the
different types of bifurcations concerning the cre-
ation or termination of closed streamlines in sec-
tion 3. Section 4 describes the algorithm that de-
tects closed streamlines and finds their exact loca-
tion. Then we describe how to construct a tube
shaped surface representing the evolution of the
closed streamline over time in section 5 while sec-
tion 6 shows the results of our method using a real
world example. Section 7 concludes and gives some
ideas for future work.

2 Related Work

From the mathematical point of view, The Visual
Mathematics Library by Abraham and Shaw [1] has
presented dynamical systems in a way that is easy to
understand by drawing discerning sketches. In par-
ticular, for depicting the evolution of closed stream-
lines in a two-dimensional time-dependent vector
field, the third space dimension is used. Further-
more, the practical significance of unsteady flow
fields has led to several techniques for the visual-
ization of time-dependent vector fields without con-
sidering closed streamlines. A method for comput-
ing streaklines in 3D unsteady flow fields has been
proposed [11]. The basic principle is to integrate
streaklines thanks to an interpolation over the 3D
space and time. The technique works also with
moving grids. Using this scheme, a method for dis-
playing unsteady flow volumes has been presented
by Becker et al. [2]. Based upon an adaptive sub-
division strategy, the authors arrive at integrating
streaklines starting on a generating polygon. Spot
noise also has been extended by de Leeuw et al.
[4] to handle time-dependent planar vector fields.
For the purpose of feature visualization, Silver [12]
tracks and correlates the extracted structures of iso-
surfaces by detecting the following fundamental
events: continuation, bifurcation, amalgation, cre-
ation and dissipation. Tricoche et al. [13] present
a method for displaying time-dependent topology
by tracking critical points over time and comput-
ing separatrix surfaces representing the evolution of
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topology. In some constellations, the critical points
can be a hint for closed streamlines.

The first two authors presented an algorithm that
computes streamlines while detecting if it runs into
a closed streamline in two dimensional flows [16].
This can also be used in the time slices of a time-
dependent dataset. Haimes discusses a similar prob-
lem [7] where residence time is used to find recircu-
lation regions. When reaching a closed streamline
the residence time is infinite. The problem of closed
streamlines is also related to the study of dynamical
systems [6], [9] which have also been an application
area for visualization. Hepting et al. [8] study in-
variant tori in four-dimensional dynamical systems
by using suitable projections into three dimensions
to enable detailed visual analysis of the tori. We-
genkittel et al. [15] present visualization techniques
for known features of dynamical systems. Biirkle
et al. [3] use a numerical algorithm developed by
some of the coauthors [5] to visualize the behavior
of more complicated dynamical systems. In the nu-
merical literature, we can find several algorithms for
the calculation of closed curves in dynamical sys-
tems [10], [14], but these algorithms are tailored to
deal with smooth dynamical systems where a closed
form solution is given and an artificial grid is intro-
duced including expensive refinements. In contrast,
visualization faces far more often piecewise linear
or bilinear vector fields. Here, the knowledge of
the grid and the linear structure of the field in the
cells allow a direct approach for the search of closed
streamlines without refining the underlying grid.

3 Theory

The topological analysis of vector fields considers
the asymptotic behavior of streamlines. The origin
set or a-limit set of a streamline c is defined by

{p € R2|E|(tn)io:0 C R, tn — —00,
lim c(tn,) = p}.
n—oo

The end set or w-limit set of a streamline « is de-
fined by

{p € R2|E|(tn)io:0 C R, tn — 0,
lim c(tn,) = p}.
n— 00

If the a- or w-limit set of a streamline consists of
only one point, this point is a critical point or a
point at the boundary 0D of our domain D. (It is



assumed that the streamline stays at the boundary
point forever in this notation.) The critical points
can be clearly identified because they are simply the
zeros of the vector field.

The most common case of an a- or w-limit set
in a planar vector field containing more than one
inner point of the domain is a closed streamline, as
described in dynamical systems theory [9]. This is
a streamline cq, so that there is a to € R/{0} with

ca(t +nto) =ca(t) VneN.

Closed streamlines are introduced in the field by
structural changes, called bifurcations. When a vec-
tor field changes over time there may be a change in
the topology from one state to another. The unstable
state in between is called a bifurcation. This change
may only affect one critical point and its nearer sur-
rounding. Then we call it a local bifurcation. The
other case is a global bifurcation where the global
structure of the flow is changed.

Here we consider only bifurcations that result in
the creation or vanishing of a closed streamline.
The main types are the Hopf Bifurcation which is
a local bifurcation and the Periodic Blue Sky in 2D
Bifurcation which is a global one.

3.1 Hopf Bifurcation

a) b)

Figure 1: Hopf bifurcation

Let us assume that we are given an attracting fo-
cus as in figure 1a so that a streamline spirals around
this critical point and finally converges against it.
If the attracting effect weakens the number of ro-
tations of the streamline will increases as in fig-
ure 1b. Continuing with this process the attracting
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focus becomes a center point (figure 1c) which is
an unstable structure: the Hopf bifurcation has oc-
curred. Going further, the structure becomes stable
again and we have now a repelling focus. Since the
global structure of the flow has not changed we still
have an inflow from the outside and a flow starting
at the critical point. Consequently, a closed stream-
line appears according to the Poincaré-Bendixson-
Theorem [6] as in figure 1d and le. Inverting the
direction of time, we get a transition from a closed
streamline with a repelling focus inside into an at-
tracting focus over an instantaneous center where
the closed streamlines vanishes. Similar transitions
are obtained by inverting the direction of the flow,
i.e. by replacing sources by sinks. (It may be noted
that we can apply the Poincaré-Bendixson-theroem
only if the vector field is continuous. Further we
have a region without critical points.)

3.2 Periodic Blue Sky in 2D Bifurcation

a)

Figure 2: Periodic Blue Sky in 2D

In this type of bifurcation there are two differ-
ent types of critical points involved: a saddle and
an attracting focus. Figure 2a shows the situation.
As the attracting effect of the focus gets weaker
and weaker we see a homoclinic connection after
some time where the saddle is connected to itself
as shown in figure 2b. This results in a bifurcation:
when this configuration breaks up again we find a
limit cycle which simply appears out of the blue.
The reason for the occurrence of the closed stream-
line is that the attracting focus is totally unaffected
by the whole event. Since there is an outflow to the
critical point inside and to the saddle there must be
a critical point or a closed streamline in this region



according to the Poincaré-Bendixson theorem. Be-
cause of the fact that there are only the two critical
points a closed streamline emerged. This configura-
tion is shown in figure 2c. Other bifurcations of the
same type can be constructed by inverting time or
replacing the attracting focus with a repelling one.

3.3 Poincaré-Map

Let us assume that we have a two-dimensional con-
tinuous vector field containing one closed stream-
line. Then we can choose a point P on the closed
streamline and draw a cross section S which is a
line segment nowhere parallel to the vector field.
This line segment is then called a Poincaré section.
If we start a streamline at an arbitrary point x on .S
and follow it until we cross the Poincaré section S
again, we get another point R(x) on S. This results
in the Poincaré map R. Figure 3 illustrates the situ-
ation. The left part shows the Poincaré section with
the closed streamline in the middle, drawn with a
thicker line. The right part displays the Poincaré
map itself. Obviously the point P on the closed
streamline is a fix point of the Poincaré map.

S R
X R&)
R(x)
P
R(y)
y
S
P x S

Figure 3: Poincaré section and Poincaré map.

4 Locating Closed Streamlines

As mentioned before a closed streamline v : R —
R?,t ~ ~(t) is a streamline of a vector field v
such that there is a to € R/{0} with (¢ + nto) =
~(t) Vn € N and v not constant. In this section we
present an algorithm that detects whether an arbi-
trary streamline c converges to such a closed curve.
This means that c has 7 as a- or w-limit set depend-
ing on the orientation of integration. We do not as-
sume any knowledge on the existence or location of
the closed curve, so that the algorithm can detect
closed streamlines. The principle of the algorithm
works on any piecewise defined planar vector field
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where one can determine the topology inside the
pieces. The following subsections repeat the main
ideas of this algorithm previously proposed by the
first two authors [16].

4.1 Finding Closed Streamlines

The basic idea of the algorithm is to determine a
region of the vector field that is never left by a
streamline. In case of a continuous vector field
the Poincaré-Bendixson-Theorem ensures that this
streamline approaches a closed streamline if no crit-
ical point exists in that region. We assume that the
data of the vector field is given on a grid consist-
ing of triangles and/or quadrilaterals. The vectors
inside a cell are interpolated linearly/bilinearly so
that we get a continuous vector field as needed for
the theorem.

A streamline approaching a closed streamline has
to reenter the same cell again. In this case we check
if the cells were crossed by the streamline in the
same order for the last two turns. This results in
a cell cycle which identifies the above mentioned
region. To examine if this cell cycle is left by the
streamline we detect possible changes by checking
the edges of the cells of the cell cycle. Therefore
we identify points on each edge which we call po-
tential exits where an outflow out of the cell cycle
may occur in the vicinity. These points are identical
with the vertices of the edge and points where the
vector field is tangential to the edge.

exit

Figure 4: If a real exit can be reached, the stream-
line will leave the cell cycle.

Then we have to figure out if the actually investi-
gated streamline will leave the cell cycle near such
an exit. Therefore we integrate a streamline back-
wards from the potential exit to see if it leaves the
cell cycle. If it does not leave after it crossed ev-
ery cell of the cell cycle it converges to our stream-
line. We call this potential exit a real exit because



the streamline will leave the cell cycle after a finite
number of turns near that exit. Figure 4 displays an
example for that case.

If the backward integrated streamline leaves the
cell cycle, there will also be an entry point as shown
in figure 5. A streamline starting at that point cannot
be crossed by our actually investigated streamline.
Consequently we cannot leave the cell cycle at this
exit.

exit

exib

entry

Figure 5: If no real exit can be reached, the stream-
line will approach a closed streamline.

If there is no real exit for the streamline, we have
proven that the streamline will never leave the cell
cycle. If there is no critical point inside the cell cy-
cle the Poincaré-Bendixson-Theorem ensures that
there exists a closed streamline in our cell cycle and
the integral curve tends toward it.

4.2 Exact Location of the Closed Stream-
line

The exact position of the closed streamline can be
found using the Poincaré map R. R maps the
point on the closed streamline onto itself because
the closed streamline will intersect the Poincaré sec-
tion always at the same point. Consequently, it is
sufficient to find the fix point to get a point on the
closed streamline. If we find a cell cycle we can
use the edge where we detected the cell cycle for
the first time as a Poincaré section. To find the fix
point of the Poincaré map we do a binary search:
first we divide the edge into two parts at the mid
point of the edge. Then we check which part gets
intersected by the streamline starting at the inter-
section point after one turn. This part is subdivided
again and we start another streamline. This contin-
ues until we are close enough at the fix point of the
Poincaré map. If we start a streamline at this point
we get the whole closed streamline after we crossed
every cell of the cell cycle. This method terminates
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because we proved in the previous step where we
detected the cell cycle that we converge to a closed
streamline.

5 Following Closed Streamlines

When dealing with time-dependent two-
dimensional flows we can use the third dimension
to represent time. We assume the vector field is
given at time slices on a triangular grid. These
time slices are connected using prism cells. To
interpolate the vectors we consider the following
map

f:RR>D — TR*’xR>CR?
(x,t) = o)

where D is the domain represented by the three di-
mensional grid. Since we need consistency with the
piecewise affine linear interpolation that would be
applied on a 2D triangulation, we have to ensure
that the restriction of the 3D interpolant to each time
plane is piecewise affine linear, too. That means
that, fixing the time coordinate and taking it as a pa-
rameter, the interpolant must be affine linear. This is
the reason why we choose the following interpolant
inside each prism cell.

For a given prism cell lying between ¢; and ¢;1,
let vj(z) = Ajxb;j, j € {i,7 + 1} be the lin-
ear interpolation corresponding to the prism triangle
faces lying in the planes {¢ = ¢;} and {t = ti41}
respectively. Then we define the interpolant over
the whole prism cell by linear interpolation over
time:

t—1t;

tiy1 — 1
tiv1 — t;

/U(xit) = t‘+] _ t_vi

vit1(x)

where ¢t € [t;,¢i41]. This formula obviously en-
sures, for each fixed value of ¢, that v(z, t) is affine
linear in z.

For tracking the closed streamlines we first de-
termine the behavior of the critical points. For a
given cell, the associated interpolant contains, for
each value of time ¢, a single critical point. This
is due to the affine linear nature of its restriction to
any time plane. Letting the time parameter ¢ move
from ¢; to t;41, the critical point position describes
a 3D curve. A detailed description of how to find
the paths of the critical points can be found in the
article of Tricoche et al. [13].



Figure 6: Closed streamlines found by the algo-
rithm.

After that we analyze the vector field in discrete
timesteps. Since there must be a critical point inside
each closed streamline we use the critical point path
containing a Hopf bifurcation as a starting point for
our streamline algorithm from subsection 4.1 which
detects the closed streamline if it exists. Therefore
we follow the critical point path in discrete steps in
positive and negative directions starting at the bifur-
cation. After we have found the cell cycle contain-
ing the closed streamline we find the exact position
using the Poincaré-map from subsection 4.2. Then
we have to check if the closed streamline really
surrounds the critical point. This is necessary be-
cause the streamline may have ran in another closed
streamline in a totally different region of the flow.
Obviously, closed streamlines surrounding the crit-
ical point occur only in one of the two temporal
directions. This process continues until the closed
streamlines reach either another bifurcation which
breaks them up or the border of the grid.

Figure 6 shows the result of this step, where
we have found the closed streamlines at various
timesteps. The closed streamlines are approximated
by several line segments and the paths of the criti-
cal points are also shown using the same colors as
in the original paper [13]. The Hopf bifurcation,
where we started to detect the closed streamlines,
is marked with a yellow sphere. In this example
the life cycle of the closed streamline is started by a
Hopf bifurcation and terminated by a Periodic Blue
Sky in 2D bifurcation.

To visualize the evolution of closed streamlines,
we construct tubes from the various closed stream-
lines similar to the pictures by Abraham and Shaw
[1]. Therefore we construct surfaces consisting of
triangles which connect the approximating line seg-
ments of the closed streamlines. The bifurcation
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Figure 7: Closed streamlines visualized as a tube
over time.

point is connected to the tube using a parabolic
surface approximated with triangles. The result is
shown in figure 7. We used an alpha value of 0.7
to get a better three dimensional impression and to
prevent the tubes from hiding the paths of the criti-
cal points.

6 Results

To test our method, we have created a synthetic vec-
tor field containing four critical points. The position
of the critical points are a function of time, describ-
ing closed curves in the plane. We have sampled
this vector field on a triangular point set for several
values of the time parameter. The rotation of the
critical points (each with a specific frequency) en-
tails many structural changes for the topology. This
is very interesting for our purpose since all differ-
ent types of bifurcations are present which create
closed streamlines.

Figure 8 shows the result of our algorithm, where
the closed streamlines are shown as red tubes. The
upper one and the one on the right are started and
terminated by Hopf bifurcations — shown as a yel-
low sphere — while the lower closed streamline
starts at a Hopf bifurcation and is terminated by a
Periodic Blue Sky in 2D bifurcation. Since there
is a critical point inside the cell cycle, i.e. the sad-
dle, the flow behaves totally different depending on
where a streamline passes the saddle. Therefore the
exact localization fails when we are too close to the
critical point.

The next dataset is a simulation of a swirling jet
with in inflow into a steady medium. The simu-
lation uses a cylindrical domain and assumes ro-
tational symmetry, so that we are left with a two-
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Figure 8: Closed streamlines found in a synthetic test dataset.

dimensional vector field on a plane through the cen-
ter axis of the cylinder. In this application one is
interested in investigating the turbulence of the vec-
tor field and in regions where the fluid stays very
long. Swirling jets play a significant role in many
combustion processes. It is important to find such
recirculation regions indicated by closed instanta-
neous streamlines. To avoid visual clutter we use
only a part of the dataset for our visualization. Fig-
ure 9 shows the result of our algorithm. The critical
point paths are also shown where saddles are col-
ored red, sinks are green, and sources are visualized
using blue color. Obviously, in regions where only
one saddle point is involved, we cannot find any
closed streamlines due to the types of bifurcations
explained in section 3. Most of the closed stream-
lines emerge at Hopf bifurcations which are marked
with a yellow sphere. Therefore, closed streamlines
are found where sources and sinks alternate while
time propagates, so that we are able to identify the
regions where the fluid stays very long.

7 Conclusions and Future Work

We presented a method to visualize the evolution
of closed streamlines over time and explained the
important role of bifurcations concerning the emer-
gence respectively termination of closed stream-
lines. Our method detects closed streamlines auto-
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matically. We succeeded in creating visualizations
like the ones presented in The Visual Mathematics
Library [1].

Due to the unstable configuration of the homo-
clinic connection of the periodic blue sky in 2D
bifurcation we actually fail to reach the bifurca-
tion exactly. Our implementation terminates the
tube representing the closed streamline slightly too
early which has to be improved in the future. An-
other missing feature in this implementation is to
find several closed streamlines around one critical
point. This can be accomplished by continuing the
check for closed streamlines near the last limit cycle
found.
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Figure 9: Closed streamlines found in a vorticity dataset.
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