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Figure 1: Intuitive error space exploration of medical image data embedded in the medical workflow. a) Iso-surface visualization of clustered
error space embedded in the established slice-by-slice reviewing method utilized in clinical daily routine. b) User selections can be made to
inspect interesting pixels. c) Error space of the user selected pixels visualized in a color coded parallel coordinate view.

Abstract

Medical image data can be affected by several image errors. These errors can lead to uncertain or wrong diagnosis in clinical
daily routine. A large variety of image error metrics are available that target different aspects of image quality forming a high-
dimensional error space, which cannot be reviewed trivially. To solve this problem, this paper presents a novel error space
exploration technique that is suitable for clinical daily routine. Therefore, the clinical workflow for reviewing medical data is
extended by error space cluster information, that can be explored by user-defined selections. The presented tool was applied to
two real-world datasets to show its effectiveness.
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1. Introduction

In clinical daily routine imaging methods such as Computed To-
mography (CT) or Magnetic Resonance Imaging (MRI), are a com-
mon imaging technique that allow medical doctors to make diagno-
sis and derive treatment plans. Although the image quality of med-
ical images constantly increased over the past years [Web88], they
still contain various image artifacts such as motion, partial volume
effects and voxel bleeding [BF].

In many cases it can be hard to determine the health condition
of a patient based on images, especially if the medical doctor tries
to answer questions such as: do I see a tumor on this scan? How
big is the tumor? Is this a problematic tissue change or an image
artifact [LATR∗16]?

Therefore, various metrics are available, that can be used to es-
timate the probability, that a voxel is effected by an image error.
These metrics target different aspects of a voxel such as the homo-
geneity of the voxel’s neighborhood or the sharpness of an edge
between two structures. To understand the quality of an image, the
variety of error metrics needs to be examined in its entirety. Unfor-
tunately, an intuitive exploration of this error space suitable for the
clinical daily routine was not provided so far 2.

Therefore, this paper presents an intuitive error space exploration
technique for medical image data that is embedded in the state of
the art slice-by-slice reviewing methods in clinical daily routine 3.
The visualization is based on an error space clustering that is visual-
ized by iso-lines in the CT scan visualization. For an intuitive visual
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Figure 2: Image errors. a) Original Image. b) Gaussian Error. c) Local Contrast. d) Acutance. e) Salt and Pepper Noise. f) Local Range.
g) Length of error vector.

exploration of the error space the users can review the composition
of the clusters and select specific voxels they want to investigate
further in a parallel coordinate plot.

Therefore, this paper contributes:

• Image error visualization in extension to the clinical workflow
• Intuitive error space exploration for medical image data

The effectiveness of the presented approach is shown with an
real world example of a brain MRI containing an error with fuzzy
borders (Section 4) and a CT scan of a pig thorax. This work is
concluded and future directions will be given in Section 5.

2. Related Work

Error and uncertainty visualization [BHJ∗14] is a wide topic that is
often applied in medical visualization due to the requirement of a
high precision in medical image data.

Volume rendering [LLPY07,FMG∗16] can be used to encode the
degree of trust for different regions in the volume rendered scan.
Although this gives a suitable overview of how accurate specific
image areas are, these techniques are not able to visualize multiple
error measurements. Therefore, the presented technique is able to
visualize a multi-variate error space for medical image data.

Multi-variate data visualization [WB97] can be accomplished for
all possible kinds of data. Volume rendering [DDC∗16, AMCH07,
MLM03] utilizing specific transfer functions to visually encode
multiple values and their similarities per grid are widely used. Al-
though these techniques offer a suitable volume visualization for
multi-variate volume datasets, they are not designed to be used in
clinical daily routine. In clinical daily routine, volume rendering
is not spread widely. In contrast to that, the presented technique
utilizes the available multi-variate visualization techniques and ex-
tends them thus they can be embedded into the slice-by-slice re-
viewing method in clinical daily routine to gain higher user accep-
tance.

3. Methods

The following Section presents an intuitive visualization to review
the error space of CT scans. Therefore, multiple error measures
(Section 3.1) are embedded in the standardized medical data visu-
alization (Section 3.2). The visualization is part of a linked view
system that allows an intuitive exploration of the image error space
(Section 3.3).

3.1. Image Errors

Due to the image reconstruction process of medical image data,
the resulting images can contain various errors. Different image er-
ror metrics are available to determine the error of an image voxel
[TR09]. Unfortunately, most of them solely target one aspect of in-
correct image values [MTM12]. Therefore, multiple image errors
need to be considered in order to cover the spectrum of image er-
rors as good as possible. In the presented work five metrics, that
cover a wide spectrum of image errors, when considering scalar
value images such as derived in medical most medical image gen-
eration processes, are defined as the error space of a medical im-
age. For an image I, each of its voxels vobtains an error vector
ve = (e1,e2,e3,e4,e5).

Table 1 shows the considered metrics and their definition:

Entry Name Reference Definition

e1
Gaussian er-
ror

[Fie97]
Distance of pixel value
from expected mean

e2
Local con-
trast

[LG13]
Pixel value occurrence in
the entire image

e3 Acutance [Art15]
Length of the pixel gradi-
ent

e4
Salt and
pepper noise [ISRM15]

Degree of affectedness
by salt and pepper noise

e5 Local range
[TXSH04]

Range of pixel values in
an image surrounding

Table 1: Image error space utilized for the presented methods, con-
taining the number, reference and definition of different image er-
rors.

Figure 2 a) shows the slice of an example CT scan of a pig. b)-f)
show the calculated image metrics according to the original im-
age. Figure 2 g) encodes the length of the resulting error vector
when assuming each error metric as one dimension. It can be seen,
that solely reviewing the length of this error vector does not hold
enough information to estimate the error of a pixel or a region.
Different combinations of error metric values can lead to the same
error length. As error metrics are encoding different aspects, the
length of the error vector is not sufficient to explore the error space
of medical image data.
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3.2. Embedded multi-variate Error Visualization

In contrast to solely reviewing the length of the image error, med-
ical doctors are interested in the composition of the error vector of
important regions, e.g. the border of a tumor. Therefore, the goal is
to embed this information into the displayed image.

In clinical daily routine a slice-by-slice representation is state of
the art and medical doctors are trained to review image data fastly
based on this technique. Therefore, the user depicts one coordinate
axis and scrolls through the image slices along this axis. The goal
of the presented technique is to provide a visualization of the error
space embedded in the slice-by-slice visualization technique thus
medical doctors can easily use it.

Figure 3: Computational workflow for the presented approach. a)
Original slice of the input volume. b) Resulting Clustering of the
error space using k-means clustering (k = 4). c) Resulting weights
for the first cluster. d) Iso-surface visualization of the first cluster
using 0.5 as iso-value. e) Embedding of iso-lines from all cluster
into the slice-by-slice reviewing method.

Error Space Clustering To identify similar behaving areas in an
image according to their error space, a clustering of the error space
is required. In the presented method, a k-means clustering is used.
Although this approach has the drawback, that a suitable k needs to
be found this method has a relatively low computational effort. For
example, a common CT scan contains about 512x512x512 pixels.
Clustering methods that estimate the number of voxels automati-
cally, usually need to compare all data points to each other to find
a suitable division into clusters. In the case of the presented error
space this would lead to (512x512x512)2 comparisons, which is an
unacceptable time consumption for clinical daily routine.

Figure 3 b) shows a slice of the resulting clustering of the image
error space for the presented example. Although the presented sys-
tem requires the user to select a k before the computational pipeline
is continued, the system could be easily extended in order to choose
k automatically [HE03].

Although this clustering provides a first overview over the be-
havior of the error space, it would not be sufficient to solely exam-
ine this visualization. Medical doctors always require the original
dataset. Therefore, the goal is to embed the clustered information
in the slice-by-slice reviewing method in clinical daily routine.

Embedded Iso-line Visualization To embed the error space clus-
ter information into the slice-by-slice reviewing method, the pre-
sented visualization implements a line-representation of the com-
puted clusters that can added to the original slice-by-slice review-
ing method.

To achieve this, it is important to identify areas in the CT-scan,
that strongly belong to a cluster and highlight them in the slice
by slice-visualization. As the k-means algorithm outputs a cluster
center for each cluster it is possible to determine the distance of
each error point d(e)c to each cluster center c. Based on this, it is
possible to assign a weight to an error vector for each cluster, that
can be computed as follows:

ω(e)c =
d(e)2

c

∑c d(e)2
c

(1)

For each voxel, the weights for all clusters sum up to 1. In the
case that an error is highly similar to an cluster center its weight
will be 1, whereas in contrast if the distance to a center is low its
weight will be 0. Figure 3 c) shows the resulting weights for the
first cluster.

For all pixels in the image, where the resulting weight of a class
is higher than 0.5 it is clear, that this pixel belongs to this clus-
ter. Various algorithms, such as marching cubes can be utilized to
generate an iso-suface based on the given weights for each cluster.
As Figure 3 shows, the resulting iso-surface for cluster 1 leads to
a massive amount of visual clutter. Adding the remaining clusters
would lead to an unusable visualization. To solve this problem, the
depicted slice of the users works as a stencil that decides the visible
iso-line, as shown in Figure 3.

3.3. Error Space Exploration

Although the embedded cluster visualization in the slice-by slice
view provides a suitable overview over the error distribution in
the observed image it is not able to show how the error vector is
composed by the single error components. Therefore, the presented
slice-by-slice visualization is part of a linked view system that al-
lows an intuitive error space exploration.

Medical doctors are usually interested in specific image regions
in the captured datasets such as the border of brain tumors. Espe-
cially these tissues can cause various image artifacts, which makes
an error space visualization important. To provide a further inves-
tigation of selected areas, the selection view is available. The se-
lection view displays a parallel coordinate visualization containing
5 axes, each representing one of the error metrics. For each se-
lected voxel, the corresponding error vector is displayed in its clus-
ter color.

This provided a focus visualization for selected pixels and areas
in the image. The selected pixels are highlighted in purple in the
slice-by-slice view. Figure 4 shows an example selection and the
resulting parallel coordinate view.
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Figure 4: The presented visualization technique applied to a brain tumor dataset. a) Original dataset in a slice-by-slice visualization common
in clinical daily routine. b) Closeup of the tumor with the presented embedded visualization. c) Selection view d) Brain tumor e) User selection
at the tumor’s border.

4. Results and Discussion

The presented approach was applied to a tissue inspection scenario
as well as a tumor identification scenario. The visualization can be
turned on and off if requested.

Tissue inspection Figure 1 shows the presented approach applied
to a CT scan of a pig [HCW∗02]. In this example, the goal was to
explore the dataset in general and review the error space behavior
for different tissues. The number of clusters was set to 4. Figure
1 a) shows the embedded cluster information in the slice-by-slice
reviewing method. Each axis (x, y and z) can be controlled sep-
arately. Two clusters of user selected points are made (shown in
Figure 1 b), one in the pig’s lung and one on the border of the pig’s
heart. The resulting parallel coordinates view is shown in 1 c). The
different error behavior for different tissues is clearly identifiable.

The design of the error space exploration is intuitive and de-
signed to be used in clinical daily routine, as it is an extension of the
widely used slice-by-slice reviewing method. The method is solely
depending on one parameter, the number of k, required for the k-
means clustering. The example shows, that a small number of k is
sufficient to identify different behaving regions in medical image
data.

Tumor Boundary Identification Figure 4 shows the applica-
tion of the presented approach to a real world dataset from the
cancer imaging archive [KBK∗13]. The example shows a MRT
brain dataset that contains a tumor [SMC∗16] with the size of
256x215x90 voxels. On the original image, it can be observed, that
the border of the tumors can not be identified clearly. In clinical
daily routine scenarios this is an important information to deter-
mine a suitable treatment plan.

In the presented example, the number of clusters was set to 4.
The presented embedded visualization allows the medical doctor
to determine different regions in the tumor where error metrics are
behaving differently (green line). While solely reviewing, the CT
scan, it is hard to determine, where exactly the border of the tumor

is located. With the embedded cluster visualization, it is possible to
determine two regions in the tumor’s border.

For these two regions, the resulting error space behaves differ-
ently. By making a selection (see Figure 4 d)) at the tumors border,
the user can further explore the composition of the errors in the two
clusters. The resulting parallel coordinate plot in Figure 4 shows
the single error values of the selected pixels. The plotted lines are
colorcoded by green and purple to indicate the cluster, they belong
to.

In the example it can be observed, that the selected voxels of the
inner (green) cluster holds a small gaussian noise and local range
error. Therefore, the medical doctor can declare this region as trust-
worthy. In contrast to that, the purple area holds a high gaussian
noise and a local range, which indicates, that this region is less
trustworthy.

5. Conclusions and Future Work

This paper presented a novel error space exploration tool for clini-
cal daily routine. A error space-based clustering was used to indi-
cate areas in medical image data that’s errors behave similar and
embed these information in the workflow used in medicine. For
a further exploration of the error space, a selection view for de-
picted voxels are provided. The presented example of a brain tumor
showed, that this visualization technique can help medical doctors
to determine the quality of different regions in medical image data
and therefore help them refine their diagnosis.

As a future task, it is planned to perform a clinical study with
the presented system to identify further improvements in the error
space exploration system. Especially the initial training of users to
understand the utilized error metrics and their intuition is targeted.
Furthermore, a highlighting that guides users to interesting error
configurations is planned.
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