
Dynamic Collaborative Visualization Ecosystem (DynaCoVE)

Christopher Koehler, Andrew Berger, Raksha Rajeshekar, Thomas Wischgoll, Member, IEEE, and Simon Su

Fig. 1. Collaborative visual analytics across display technologies with DynaCoVE. Client wrappers encapsulate standard visualization
tools that were not originally capable of interacting together. Supplemental illustration denotes components at play in an actual session.

Abstract— There is no one display device or software package that is ideally suited for interactively visualizing related non-spatial, 1D,
2D, 3D, and 4D datasets. This is a major drawback, as the benefits of interactive visualization and advanced display technologies
cannot be brought to bear. The Dynamic Collaborative Visualization Ecosystem (DynaCoVE) framework addresses this limitation
by unifying SciVis, InfoVis, and display technology tools. Pre-existing packages are wrapped as DynaCoVE clients. This entails
tracking user interactions with their GUI’s and also automatically updating them in response to cues from the DynaCoVE server. The
DynaCoVE server then acts as a message broker between many collaborating clients. A messaging protocol was defined based on
ZeroMQ’s majordomo protocol to enable efficient communication between clients and the server. Thus, visualization software packages
that were never intended to be used together can be linked to perform cross display visual analytics. The system is intended to be
data and user centric while remaining software, algorithm and display agnostic. This is accomplished in part by providing a common
meta-visualization graph interface to setup cross-display visualizations. To date DynaCoVE clients for Looker, VisIt, and VTK have
been tested together with traditional monitors, tiled displays, and an immersive CAVE-type system.

Index Terms—Data fusion and integration, large and high-res displays, collaborative and distributed visualization, integrating spatial
and non-spatial data visualization, coordinated and multiple views.

1 INTRODUCTION

Data is rapidly getting larger and more diverse. Interactive, human-in-
the-loop visualizations linking all data sources pertaining to the most

• Christopher Koehler is with Universal Technology Corporation. E-mail:
ckoehler@utcdayton.com.

• Andrew Berger is with Universal Technology Corporation. E-mail:
aberger@utcdayton.com.

• Raksha Rajeshekar is with Wright State University. E-mail:
rajashekar.3@wright.edu.

• Thomas Wischgoll is with Wright State University. E-mail:
thomas.wischgoll@wright.edu.

• Simon Su is with the US Army Research Laboratory. E-mail:
simon.m.su.civ@mail.mil.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

challenging problems is more advantageous than static visualizations of
individual pieces of data in isolation [1]. However, the software needed
to interactively bring multiple state-of-the-art visualization tools and
display hardware technologies to bear together is sorely lacking.

For example, if a user is interacting with 4D simulation data in a
Cave environment and they find something interesting they may wish
to interactively bring up the contextual information surrounding that
instant on an adjoining wall display for a collaborator to visualize using
an appropriate tool. Similarly, interacting with the contextual data
should be able to drive the 3D volumetric display. This should not
be complicated! However, it is potentially not even possible without
employing a slew of one-off tools due to a lack of software support.

The Dynamic Collaborative Visualization Ecosystem (DynaCoVE)
framework was created to address these limitations. It provides an
efficient framework to build interactive visual analytics tools from a
suite of pre-existing components. Thus, the aim of DynaCoVE is not
to replace the current state-of-the-art visualization tools but rather to
enhance them with increased potential for collaborative interaction and



Fig. 2. IIllustration of the visualization ecosystem concept and cross section of the many components that are envisioned for eventual inclusion.
DynaCoVE currently has Looker, VisIt, and VTK/VRUI clients. More are in the process of being added.

greatly increased display realestate. An example of a visual analytics
solution created with DynaCoVE is shown in Fig. 1.

2 RELATED WORK

The current work is related to several branches of previous research in-
cluding interactive information and scientific visualization, frameworks
for collaborative visual analytics, and methods of enabling interaction
between monolithic multidisciplinary analysis tools that were not origi-
nally intended to be used together. An overview of this previous work
is presented now.

Visual Analytics, the science of human reasoning supported by inter-
active visual interfaces, is a broad field [2, 3]. It encompasses elements
of visualization, data mining, statistics, big data, and human-computer
interaction. Speaking purely on the visualization size, interactive vi-
sual analytics is most pervasive in information visualization (InfoVis)
type tools and methods that are primarily appropriate for 2D displays.
This can be seen in current commercial tools, such as Looker [4],
Tableau [5], and Power BI [6], which provide a suite of basic InfoVis
constructs. Such tools provide simple, intuitive interaction paradigms
such as linked views, selection, and brushing that are easy to use and
understand. From an interaction standpoint, DynaCoVE is initially tar-
getting similar capabilities, while providing interaction across different
packages and display environments.

User interaction has also been demonstrated for isolating important
regions in scientific visualization. For example, Doleisch developed
SimVis, which uses traditionally infovis techniques for interactive scien-
tific visualization [7]. Shi et al. extended this approach by incorporating
pathline attributes into a similar system [8]. Muigg et al. used inter-
active linked views with three kinds of focus [9]. Such methods leave
finding important regions to users by providing tools to help them iso-
late their domain of interest. Koehler et al. used interactively controlled
adjoint enhancement to adjust emphasis of physical regions based on
their importance relative to a specific quantity of interest [10].

More recent efforts have addressed some aspects of a visualiza-
tion ecology [11] such as collaborative visualization, mixed spatial
and nonspatial visualization, and hybrid display visualization systems.
For example Su et al. created a hybrid scientific and non-scientific
visualization system [12]. Marrinan et al. developed SAGE2 [13] to fa-
cilitate collaboration on large shared displays. Kobayashi et al. created
ParaSAGE [14], an extension of ParaView to SAGE2. There has also
been some work on a collaborative high resolution data visualization
framework [15] on top of the ParaViewWeb framework [16]. Despite
these advances, to the best of our knowledge no current tool takes

interactive visualization to the level of cross datatype, cross visualiza-
tion software package, and cross display hardware interactivity that is
targetted by DynaCoVE.

Implementing a visualization ecosystem also shares common chal-
lenges with other efforts in terms of linking software packages and
translating from standard configuration formats to drive a multitude of
tools. One such effort is the Computational Aircraft Prototype Synthe-
sis (CAPS) program [17]. Here the goal is to perform multi-disciplinary
simulations from a common geometry. This requires initializing many
analysis tools from a universal configuration format. DynaCoVE’s
interface must do something similar in terms of initializing many vi-
sualization tools from a common interface. On the communication
side the Hermes framework for cross-language remote procedure was
developed to simiplify interacting between analysis components in a
multidisciplinary simulation running on separate machines [18].

3 BACKGROUND

Other disciplines including data science and machine learning are re-
cently discovering that a multiple intelligence (multi-INT) data fusion
approach is capable of achieving results beyond traditional ‘stoved-
piped’ processing of individual data sources [19–21]. Interactive visu-
alization stands to benefit from a more unified approach as well.

However, interactive visualization of many related but differently
typed datasets across different 2D, 2.5D, and 3D displays is currently
a very cumbersome process. This is partially due to the fact that no
single software package or display/input device is ideal for the many
types of non-spatial, 1D, 2D, 3D, and 4D data available, and partially
due to a lack of suitable software support. Interactive visualization
across the traditional visualization disciplines (InfoVis and scientific
visualization) is particularly lacking.

The solution is not to create a monolithic piece of software that
will ‘do everything’. Instead, the solution is a visualization ecosystem
[11], which modularizes and unifies existing capabilities from the
fields of visual analytics, InfoVis, data analytics, big data, scientific
visualization and display hardware. Existing state-of-the-art tools are
modularized and unified in a composable, scalable, data and user centric
interface. Visual analytics solutions can then be created on the fly from
combinations of the tools that have been wrapped into the ecosystem.

The Dynamic Collaborative Visualization Ecosystem (DynaCoVE)
is a fully functioning visualization ecosystem. It has been demon-
strated with multiple state-of-the-art InfoVis and scientific visualization
tools that were not originally designed to interact together, including
VisIt [22], Looker [4], and VTK/VRUI [23, 24]. Further, DynaCoVE’s



Fig. 3. Illustration of VisIt Components that can drive and receive interactions from other DynaCoVE clients

architecture was designed to be rapidly extended beyond the initial
toolset by providing standard client stub interfaces in multiple lan-
guages to wrap additional tools. Thus, the system remains agnostic to
the individual visualization tools, algorithms and display technologies.
The concept is illustrated in Fig. 2.

4 METHOD

To create interactive visualizations between pre-existing visualization
packages they are first encapsulated as DynaCoVE clients. A Dyna-
CoVE server then acts as a message broker between clients. There
is currently a local version of the server as well as a public Amazon
Web Services (AWS) version. The ZeroMQ distributed communication
library handles message passing between the clients and the server.
This section presents more detail on each of these components.

4.1 DynaCoVE Clients
A visualization ecosystem requires that existing tools be encapsulated
in full or in part to operate as clients in a larger interactive system.
These tools may be large and monolithic in nature, however there is a
simple test to determine how well they can function in a visualization
ecosystem. In order to have interactions flowing in and out of any
given client, a package must meet the following two criteria for a fully
functional inclusion in DynaCoVE.

1. One can catch and expose a desired subset of user interactions
with its visual interface to be sent to the DynaCoVE server to
drive updates to visualizations in other displays.

2. Its visual interface can be updated through an API in response to
instructions incoming from the DynaCoVE server due to to users
interacting with other clients.

At this time, DynaCoVE has working clients for VisIt, VTK/VRUI,
and Looker.

4.1.1 Visit Client
VisIt is a monolithic, distributed, parallel, scientific visualization tool.
It has the ability to utilize parallel capabilities of modern graphics
hardware and HPC resources, and it can visualize data without needing
to move it around. A DynaCoVE client has been created for visit.

There are quite a few events that the VisIt GUI can generate in
response to a user’s interactions with it, as can be seen in the VisIt
Python Manual [25]. Using custom callback functions registered for

certain relevant GUI events, the DynaCoVE VisIt client is able to
expose the necessary interaction history to meet the first criterion. The
DynaCoVE client currently has callbacks to capture VisIt GUI events
from the following UI components, their corresponding VisIt GUI
events are shown in Fig. 3.

• Time Slider

• Data Plots

• Data Filters

• Visualization Attributes

With regard to the second criterion to be a DynaCoVE client, VisIt’s
Python command line interface (CLI) was implemented such that exist-
ing Python scripts can be augmented with code to control essentially
any aspect of VisIt that its GUI can control. Thus, VisIt can be made to
respond to user interactions with other tools. The portions of VisIt’s
GUI that can be driven from external packages or used to drive external
packages is shown in Fig. 3.

4.1.2 VTK/VRUI Client
A VTK/VRUI [23, 24] DynaCoVE client was also created. This client
is more low level in nature than the VisIt client, however it offers
stronger scalability to different display and input device types. It
builds on the VRUI environment to support different display systems
ranging from conventional desktop environments to full-scale CAVE-
type display systems without requiring any additional work. It also
supports different types of head-mounted displays that are fully tracked
for more sophisticated input paradigms, as well as touch-based input
devices. The VTK/VRUI client current capabilities include support
for unsteady 3D volumetric, vector field and mesh data. It can receive
instructions from the server to change data sets, change time steps,
and change iso-values. Given the low level nature of this client, it was
straightforward to build the necessary interface event logging straight
into the C++ source code.

4.1.3 Looker Client
The DynaCoVE Looker client relies primarily on Looker’s Data Actions
to drive communication with the server. Data Actions can be defined
on any Looker data model to allow users to perform tasks in other tools
from within Looker. This functionality was a major factor in Looker’s
early inclusion in DynaCoVE. When a user initiates a Data Action



Fig. 4. Looker client use. (a) A context menu containing the DynaCoVE data action appears upon interacting with a dashboard. (b) A session ID is
initialized, as multiple collaborative sessions may be running through the DynaCoVE server at any given moment.

on a data point, a message containing the data point and other data is
sent to Looker’s Action Hub server. A reusable Send to DynaCoVE
Data Action was created and deployed a customized Action Hub which
receives the Action and forwards its data to the DynaCoVE server.
Once configured, the user interaction flow is as follows.

1. Build acompatible query against the data model, and select a
visualization.

2. A user clicks on a visualization in a dashboard and is presented
with a drop-down contex menu with a link to initiate the Send to
DynaCoVE Data Action (Fig. 4a).

3. Optionally, a form can be presented with additional inputs (Fig.
4b). The Data Action is executed when the user clicks “Submit”.
If no form is defined, the Data Action is immediately executed.

4. A request is sent to the Action Hub, which forwards the data to
the DynaCoVE server.

5. The DynaCoVE server broadcasts the data to all other clients.

4.2 DynaCoVE Server
DynaCoVE is arranged in a client-server architecture with the server
acting as a “message broker” between clients. In this context a client is
any system that is capable of displaying a visualization and receiving
input either through a local GUI or from another client through the
server. Different clients may provide distinct visualization, display, and
user input capabilities, but care was taken to ensure these details have
no bearing on the server in order to simplify future extension.

Collaborative visual analytics amongst clients operating at differ-
ent geographic locations requires accessibility over the public internet.
While a local install is one option, the main DynaCoVE server and
Looker Action Hub are cloud hosted applications residing in AWS to
enable the desired level of collaborative interaction. To protect the data
in transit between Looker and the DynaCoVE Action Hub, the HTTP
traffic is encrypted using 4096-bit TLS asymmetric key cryptographic
certificates generated with the Let’s Encrypt Certificate Authority and
4096-bit Diffie-Hellman key exchange parameters. Efforts are under-
way to provide equivalent security in the DynaCoVE server.

It is assumed that all clients that connect to the server are participat-
ing in a specific collaborative session. A uniqued session ID is needed
to allow the server to properly route messages from one client to all
other clients in the same session. Furthermore, to enable interaction all
clients in a session are operating on datasets containing a common vari-
able, which we call the shared key. This shared key must be configured
when configuring a visual analytics session between clients operating

on different data. It is left to the user to define a meaningful linkage
between datasets. More details on the test data types is presented later.
Fig. 5a illustrates a session with two clients connected, Looker for 2D
interaction and VTK/VRUI for 3D interaction.

4.3 DynaCoVE Communication
Communications between the aforementioned modules was handled in
a client-server model using the ZeroMQ distributed message passing
library [26]. ZeroMQ supports many languages and many communica-
tion protocols, which is key given that one cannot predict which future
components may need to be wrapped into DynaCoVE.

4.3.1 Scalability

Starting with a communication framework that will scale to large data
was critical, as large transfers are anticipated as DynaCoVE is extended
to encapsulate more tools. Further, some clients may eventually need
to run in parallel so parallel communication support was desired. For
these reasons, strong and weak scalability tests were run with ZeroMQ
to verify that it would meet DynaCoVE’s future needs. The scalability
testing approach can be summarized as follows.

• A shell version of the DynaCoVE C++ client stub was modified
to run in parallel with MPI.

• Weak (same size per core) and Strong (same total size) scaling
tests were run on 16, 32, 64, 128 and 256 cores.

• Tests were run with vectors of doubles of length 25 up to 218.

Scalability results were promising. For a set amount of data per core,
the execution time does not change significantly as more cores, and
therefore more data, is added. For fixed data sizes, the data transfer time
dropped near linearly in proportion to the number of cores. For this
reason, ZeroMQ was selected as the underlying distributed message
passing library used by DynaCoVE.

4.3.2 DynaCoVE Messaging Protocol

A DynaCoVE client-server communication protocol specification was
defined based on ZeroMQ’s Majordomo Protocol [27]. This is called
the DynaCoVE Messaging Protocol. This specification defines an
asynchronous two-way communication protocol that allows clients to
send and receive control messages and arbitrary unstructured data.

Messages consist of a message type header followed by an optional
message body. To serialize arbitrary data structures and eliminate
differences in data representation between programming languages,



Fig. 5. Communication between components in dynacove. (a) Example collaborative visual analytics session between the DynaCoVE server and the
Looker and VTK/VRUI clients. (b) Sequence diagram detailing messages exchanged during an example interactive visualization session involving
two clients. HEARTBEAT messages are not shown.

message bodies are encoded in the popular JSON format [28]. Table 1
describes the message types defined by the protocol.

An example collaborative session involving two clients is illustrated
in Fig. 5b. Interactions with both clients are capable of driving updates
in the other clients as long as they are participating in the same session.
This works the same way if the clients are running on the same computer
or in different geographic locations on different types of displays.

4.3.3 DynaCoVE Interface

Clients in DynaCoVE typically have their own interface in order to
setup visualizations. It is feasible to manually initialize each client,
however when several clients are participating in a unified session it is
desireable to be able to initialize them from a single interface. Dyna-
CoVE provides a means to accomplish this called the meta-visualization
graph (MVG). Inspired by the shader graph networks used in 3D mod-
eling packages, the MVG is essentially a graph network that allows one
to chain visualization algorithms together to define an output for each
display in a session.

The MVG provides a means to specify datasets and the shared key,
synchronize transient data when there is not an exact mapping between
file numbers, and set up visualizations. A visualization interface mod-
ule (VIM) is then used to parse the MVG, and produce client-specific
configuration and initialization. When a new client is added to Dyna-
CoVE, a new VIM must also be provided in order to take advantage
of this capability. At this time, the MVG is specified in a text-based
configuration file that is input during session setup, however work
is currently underway to have a D3-based interface [29] capable of
graphically building an MVG.

5 RESULTS

The aforementioned visualization ecosystem components have been
tested with a variety of data types and display hardware. The interaction
updates are quite responsive. The only caveat here is that there is some
lag when processing the whole unsteady vector field, as individual time
steps are in excess of 600MB. However, this lab was no more severe
than what is encountered in stand-alone visualization tools, so it is not
believed to be related to some bottleneck in DynaCoVE’s distributed

Message Type Description

HEARTBEAT Clients and the server continuously transmit
HEARTBEAT messages with a reliable fre-
quency to support detection of dropped or stale
connections and prevent early termination.

ERROR Error reporting. This message type is defined for
future use, but is presently unutilized.

REGISTER The first message transmitted by a client to the
server, providing any data or metadata necessary
to register the client.

READY The server responds with a READY message
after a client has been successfully registered.

DISCONNECT A message indicating that the connection is
about to be terminated.

DATA A JSON-encoded arbitrary data message. Any
data necessary to further route the message or
handle its contents should be contained within
the body of the message.

Table 1. DynaCoVE Messaging Protocol Message Types.

communication. A record of the visual analtyics test cases run with
DynaCoVE thus far is summarized in the remainder of this section.

5.1 Representative Test Data
To properly test DynaCoVE, one needs multiple related datasets with a
variety of different spatial components and datatypes. The content of
the datasets is actually irrelevant for our purposes, and could have been
synthetically generated. However it is easier to evaluate DynaCoVE
using datasets that the authors had a good feeling of how things ought to
be looking in all of the visualizations. For this reasons, we used a series
of datasets gathered from a previous study of dragonfly flight [30–32].



Fig. 6. Related but differently typed data sets used to test DynaCoVE. (a) Vector field data. (b) Mesh data. (c) Video data. (d) Tabular data.

The individual test datasets include the following.

• Unsteady 3D vector field data: 800 time steps of fluid simulation
output in VTK format.

• High-speed camera data: Three videos with 80 time steps each
from different perspectives taken at the same time in TIF format.

• 3D mesh data: 800 time steps of body and flapping wing surfaces
previously extracted from video data in OBJ format.

• Tabular numeric database: 800 time steps of various measure-
ments including lift and thrust coefficients and wing twist and
camber measurements taken from both wings and the flow field
at each time step.

All the datasets can be linked in a meaningful way with a shared
key to enable interactive visualization due to the fact that they all share
a common time scale. An additional challenge here was that while
the physical time scale was the same, the number of discrete time
steps available weren’t equal for each dataset. For example, there are
800 time steps of vector field data that correspond to 80 time steps of
high speed camera data. Any required scaling over the key variable is
accounted for during session setup. The test data is shown in Fig 6.

5.2 Tested Data Combinations
The DynaCoVE clients for VisIt, VTK/VRUI, Looker were created
in parallel with the server. While integrating the components and
smoothing out unforseen issues, a series of increasingly complex text
cases was employed. Table 2 denotes the exact configurations that
have been run to date. These combinations were each test with several
display options.

Tabular Vector Surface Video

VisIt VisIt

VisIt VisIt

Looker VisIt VisIt VisIt

VTK/VRUI VisIt

Looker VTK/VRUI VisIt

Looker VTK/VRUI VisIt VisIt

Table 2. Summary of cross display interactive visualizations that have
been run with the DynaCoVE to date. The degree of difficulty increases
top down.

5.3 Visualizations
With regard to the display technology, DynaCoVE was tested in Wright
State University’s Appenzeller Visualization Lab [33], which houses
a variety of different 2D, 2.5D, and 3D display hardware for testing

purposes. Specifically, the Appenzeller Lab currently includes a Barco
Ispace, multiple 3D TVs with optical trackers, a passive projection
screen with a Kinect sensor, a 48-megapixel tiled wall display, a Sony
HMZ-T1 head-mounted display with optical trackers, and a custom
built Display Infrastructure for Virtual Environments (DIVE) system
with 3 walls and a 12 by 12 foot walkable footprint. Thus far, the
majority of the testing has focused on the tiled wall display, the DIVE
system with an attached head tracker, and on traditional 2D monitors.

The most basic first steps after integrating all of the DynaCoVE
components was to mirror the same visualization in the same package
on multiple computers. Updates initiated to the GUI of one display can
then be reflected in all other displays in the session. Once this capability
was in place several example collaborative visual analytics sessions
were made on multiple computers with multiple display types running
multiple visualization packages. An example of this is shown in Fig. 7.
This figure illustrates the display agnostic characteristic of DynaCoVE,
as the same client (VisIt, VisIt and Looker), data (mesh, video, and
tabular) and visualization algorithm (wireframe, pseudocolor, and bar
chart) combination is being run on two combinations of displays. This
is a trivial change in the session setup.

A similar example is shown in Fig. ??. Here the full DIVE system
is running with the VTK/VRUI client. As long as it was working with
the individual client software a priori, the 6-DOF head tracker inpute
device works automatically with DynaCoVE in the 3D display with no
special setup instructions.

It was discovered that there can be some synchronization issues
when dealing with many displays in a collaborative visual analytics
session, when one or more is operating on significantly larger datasets
than the others. In our example cases, visualizations using the vector
field data are significantly more cumbersome than all the other related
datasets. The communication overhead imposed by the DynaCoVE
server is negligible, so any lag imposed by data sizes is no different
than what would be seen in individual packages on individual displays.
However, the difference here is that one can continue interacting with a
client that has a more lightweight dataset, unaware that they are queuing
up updates in another display that is no longer in sync.

One way to resolve this issue is via a hierarchical data reduction
scheme. Work is underway to incorporate the necessary data analytics
clients into DynaCoVE to enable this option. Another option is to detect
the situation on the server side and send cues to the respective clients
to either reset the client that is behind or temporarilly prevent incoming
instructions from other clients specifying additional interactions until
the lagging client is once again up to date.

Tracking the situation on the server side can be done in real time. For
example, in Fig. 8, a console log of interactions is shown in realtime as
interactions propogate between VisIt and VTK clients. The server not
only propogates user interactions, but it also tracks when actions are
automatically completed elsewhere in response to user actions.

As mentioned earlier, DynaCoVE is intentionally display technology,
and visualization algorithm agnostic. It is ultimately up to the user to
define cross dataset linkages that will yield meaningfull visualizations,
with DynaCoVE as the enabling framework. DynaCoVE’s aim is to
provide the necessary means to encapsulate existing tools in such a



Fig. 7. Demonstration if display agnostic capabilities of DynaCoVE. Here, two collaborative visual analytics sessions are shown that were set up with
the same combination of clients and datasets. Aside from ensuring that the client software is properly installed, there are no actual changes to
DynaCoVE’s configuration needed to operate in different display environments. Top: Three traditional monitors. Bottom: Two laptops and one tiled
wall display.

way that cross-display, cross-package interactions can be efficiently
performed.

6 CONCLUSION AND FUTURE WORK

Based on the results achieved to date, DynaCoVE is believed to be
successful first concrete implementation of a visualaization ecology
[11]. In particular, the ability to have cross display interactions between
disparate visualization capabilities was demonstrated, to an extent that
is to the best of our knowledge, novel.

There are a few existing components of DynaCoVE that could be
improved further. For example, the meta-visualization graph option to
initialize many visualization packages from a common interface is still

text based at this time and should be extended to a more user friendly
graphical capability. Further, the visualization clients integrated into
DynaCoVE currently only expose a subset of their capabilities to Dy-
naCoVE, so this stands to be extended to make the tool more general
purpose. Based on the lessons learned to date the future work on the
DynaCoVE framework will focus on the following areas.

1. Integrate modern big data management components (Hadoop,
Spark, etc.) into DynaCoVE.

2. Identify the potential users of DynaCoVE to better understand
their needs. In particular, DynaCoVE is believed to be applicable
to test and evaluation [34] as well as multidisciplinary engineer-



Fig. 8. Example of two VisIt clients (left and center displays) displaying mesh and video data for the dragonfly test dataset, and one Looker client with
a bar chart with time on the x-axis and synthetic data on the y-axis. Each display is connected to a separate Linux workstation. Interactive updates
occur in near realtime for these datasets.

ing.

3. Test DynaCoVE scalability for interactive visualizations that re-
quire large amounts of data transfer in near real time.

4. Provide additional sanity checks to ensure accurate visualiza-
tions. For example, identify when one display is out of sync with
all other displays due to excessive queued up interactions, and
automatically skip forward to align current states in all displays.

5. Extend DynaCoVE to include data analytics clients (data reduc-
tion, machine learning, clustering, etc.)

6. Extend DynaCoVE on a wider variety of display and input devices
including non-visual systems like wearable sensors that can be
monitored visually with DynaCoVE as well as 6-DOF and haptics
input devices

7. Implement the full meta-visualization graph interface in a D3-
based case setup client

8. Test DynaCoVE for collaborative visualization with users at dif-
ferent geographic locations

ACKNOWLEDGMENTS

This work was supported in part by the Army Research Lab SBIR
TODO a grant from XYZ (# 12345-67890).

REFERENCES

[1] A. Endert, M. S. Hossain, N. Ramakrishnan, C. North, P. Fiaux, and
C. Andrews, “The human is the loop: new directions for visual analyt-
ics,” Journal of Intelligent Information Systems, vol. 43, pp. 411–435,
December 2014.

[2] L. Zhang, A. Stoffel, M. Behrisch, S. Mittelstadt, T. Schreck, R. Pompl,
S. Weber, H. Last, and D. Keim, “Visual analytics for the big data era
— a comparative review of state-of-the-art commercial systems,” in 2012
IEEE Conference on Visual Analytics Science and Technology (VAST),
pp. 173–182, October 2012.

[3] D. A. Keim, F. Mansmann, J. Schneidewind, J. Thomas, and H. Ziegler,
Visual Analytics: Scope and Challenges, pp. 76–90. Springer Berlin
Heidelberg, 2008.

[4] “Looker.” https://looker.com/. Accessed: 2019-03-14.
[5] “Tableau.” https://www.tableau.com/. Accessed: 2019-03-14.
[6] “Power bi.” https://powerbi.microsoft.com/en-us/. Accessed:

2019-03-14.
[7] H. Doleisch, “Simvis: Interactive visual analysis of large and time-

dependent 3d simulation data,” in Simulation Conference, 2007 Winter,
pp. 712–720, December 2007.

[8] K. Shi, H. Theisel, H. Hauser, T. Weinkauf, K. Matkovic, H.-C. Hege,
and H.-P. Seidel, “Path line attributes - an information visualization ap-
proach to analyzing the dynamic behavior of 3d time-dependent flow
fields,” in Topology-Based Methods in Visualization II, Mathematics and
Visualization, pp. 75–88, 2009.

[9] P. Muigg, J. Kehrer, S. Oeltze, H. Piringer, H. Doleisch, B. Preim, and
H. Hauser, “A four-level focus+context approach to interactive visual
analysis of temporal features in large scientific data,” Comput. Graph.
Forum, pp. 775–782, May 2008.

[10] C. Koehler, R. Durscher, P. Beran, and N. Bhagat, “Adjoint-enhanced flow
visualization,” Journal of Visualization, vol. 21, pp. 819–834, October
2018.

[11] S. Su, M. Barton, M. An, V. Perry, C. Li, J. Jia, and B. Panneton, “Visual
analytics ecology for complex system testing,” in Vis in Practice, October
2017.

[12] S. Su, A. Chaudhary, P. O’Leary, B. Geveci, W. Sherman, H. Nieto, and
L. Francisco-Revilla, “Virtual reality enabled scientific visualization work-
flow,” in 2015 IEEE 1st Workshop on Everyday Virtual Reality (WEVR),
pp. 29–32, March 2015.

[13] T. Marrinan, J. Aurisano, A. Nishimoto, K. Bharadwaj, V. Mateevitsi,
L. Renambot, and L. Long, “Sage2: A new approach for data intensive
collaboration using scalable resolution shared displays,” in 10th IEEE
International Conference on Collaborative Computing: Networking, Ap-
plications and Worksharing, pp. 177–186, October 2014.

[14] D. Kobayashi, S. Su, L. Bravo, J. Leigh, and D. Shires, “Parasage: Scalable

https://looker.com/
https://www.tableau.com/
https://powerbi.microsoft.com/en-us/


web-based scientific visualization for ultra resolution display environment,”
in IEEE Visualization, Poster, October 2016.

[15] S. Su, V. Perry, N. Cantner, D. Kobayashi, and J. Leigh, “High-resolution
interactive and collaborative data visualization framework for large-scale
data analysis,” in 2016 International Conference on Collaboration Tech-
nologies and Systems (CTS), pp. 275–280, October 2016.

[16] “Paraview web.” https://www.paraview.org/web/. Accessed: 2019-
03-14.

[17] R. Durscher and D. Reedy, “pycaps: A python interface to the compu-
tational aircraft prototype syntheses,” in AIAA Scitech Forum, January
2019.

[18] R. Snyder, “Sensitivity analysis for multidisciplinary systems (sams),”
tech. rep., Air Force Research Lab, January 2016.

[19] B. Khaleghi, A. Khamis, F. O. Karray, and S. N. Razavi, “Multisensor
data fusion: A review of the state-of-the-art,” Information Fusion, vol. 14,
no. 1, pp. 28–44, 2013.

[20] R. Niu, P. Zulch, M. Distasio, E. Blasch, G. Chen, D. Shen, Z. Wang, and
J. Lu, “Joint sparsity based heterogeneous data-level fusion for multi-target
discovery,” in 2018 IEEE Aerospace Conference, pp. 1–8, March 2018.

[21] K. Sohn, W. Shang, and H. Lee, “Improved multimodal deep learning with
variation of information,” in Advances in Neural Information Processing
Systems 27, pp. 2141–2149, 2014.

[22] H. Childs, E. Brugger, B. Whitlock, J. S Meredith, S. Ahern, K. Bon-
nell, M. Miller, G. Weber, C. Harrison, D. Pugmire, T. Fogal, C. Garth,
A. Sanderson, E. W. Bethel, M. Durant, D. Camp, J. Favre, O. Rübel,
P. Navratil, and F. Vivodtzev, “Visit: An end-user tool for visualizing and
analyzing very large data,” Proceed SciDAC, pp. 1–16, January 2011.

[23] W. J. Schroeder, L. S. Avila, and W. Hoffman, “Visualizing with vtk: a
tutorial,” IEEE Computer Graphics and Applications, vol. 20, pp. 20–27,
September 2000.

[24] “Vrui vr toolkit.” http://idav.ucdavis.edu/˜okreylos/ResDev/
Vrui/, 2015. Accessed: 2019-03-14.

[25] “Visit python interface manual.” http://visit.ilight.com/svn/
visit/trunk/releases/2.10.0/VisItPythonManual.pdf. Ac-
cessed: 2019-03-14.

[26] P. Hintjens, ZeroMQ: messaging for many applications. O’Reilly Media,
Inc., 2013.

[27] “Zeromq majordomo protocol.” https://rfc.zeromq.org/spec:7/
MDP/. Accessed: 2019-03-14.

[28] “Javascript object notation (json).” https://www.json.org/. Accessed:
2019-03-14.

[29] M. Bostock, V. Ogievetsky, and J. Heer, “D3: Data-driven documents,”
IEEE Trans. Visualization & Comp. Graphics (Proc. InfoVis), 2011.

[30] C. Koehler, T. Wischgoll, H. Dong, and Z. Gaston, “Vortex visualization
in ultra low reynolds number insect flight,” IEEE TVCG, vol. 17, pp. 2071–
2079, Dec. 2011.

[31] C. Koehler, Z. Liang, Z. Gaston, H. Wan, and H. Dong, “3d reconstruction
and analysis of wing deformation in free-flying dragonflies,” Journal of
Experimental Biology, vol. 215, no. 17, pp. 3018–3027, 2012.

[32] H. Dong, Z. Liang, H. Wan, C. Koehler, and Z. Gaston, “An integrated
analysis of a dragonfly in free flight,” in 28th AIAA Applied Aerodynamics
Conference, June 2010.

[33] T. Wischgoll, “Display systems for visualization and simulation in virtual
environments,” Electronic Imaging, no. 1, pp. 78–88, 2017.

[34] M. Barton and N. Raju, “Data-intensive computing for test and evaluation,”
ITEA Journal, vol. 38, no. 2, pp. 177–152, 2017.

https://www.paraview.org/web/
http://idav.ucdavis.edu/~okreylos/ResDev/Vrui/
http://idav.ucdavis.edu/~okreylos/ResDev/Vrui/
http://visit.ilight.com/svn/visit/trunk/releases/2.10.0/VisItPythonManual.pdf
http://visit.ilight.com/svn/visit/trunk/releases/2.10.0/VisItPythonManual.pdf
https://rfc.zeromq.org/spec:7/MDP/
https://rfc.zeromq.org/spec:7/MDP/
https://www.json.org/

	Introduction
	Related Work
	Background
	Method
	DynaCoVE Clients
	Visit Client
	VTK/VRUI Client
	Looker Client

	DynaCoVE Server
	DynaCoVE Communication
	Scalability
	DynaCoVE Messaging Protocol
	DynaCoVE Interface


	Results
	Representative Test Data
	Tested Data Combinations
	Visualizations

	Conclusion and Future Work

