
Center for Cyber-Physical Systems: Immersive Visualization and
Simulation Environment

Thomas Wischgoll*
Wright State University

Figure 1: Anatomic visualization in a CAVE-type display system.

ABSTRACT

Immersive display systems in the form of head-mounted displays
or full-size, walkable display systems can provide a very intuitive
environment for a multitude of applications. Such applications
include exploration, simulation for training, experimental studies
to learn about people’s behavior, and many more. Similarly, large-
scale high-resolution display systems can also be very effective
in data exploration and visualization. These systems can also be
fully immersive. This paper describes the infrastructure available at
Wright State University with its advantages and disadvantages and
discusses some of its use cases as well as its setup and administration.

Index Terms: Computing methodologies—Computer graphics—
Graphics systems and interfaces—Virtual reality; Comput-
ing methodologies—Computer graphics—Graphics systems and
interfaces—Mixed / augmented reality

1 INTRODUCTION

The visualization and simulation infrastructure at Wright State Uni-
versity is supported by the Appenzeller Visualization Laboratory
and the Immersive Visualization and Animation Theater. These two
laboratories serve the common goal of making a variety of display
systems available to the university. The Appenzeller Visualization
Laboratory is more focused on the research side with some teaching
components whereas the Immersive Visualization and Animation
Theater provides students with 24/7 access to fully immersive dis-
play capabilities.

Right from the inception of this infrastructure, it was important
to provide access to a variety of diverse display systems as different
applications require different parameters. This diverse configuration
also allows for direct comparison of different display environments
to identify the most suitable one for a specific application or to
interconnect display systems for a collaborative environment [6].

*e-mail: thomas.wischgoll@wright.edu

Figure 2: Students using an HTC Vive Eye head-mounted display with
their custom-developed software also showing on the screen in the
back.

This paper outlines the various display systems and environments
available at Wright State University and discusses both the hardware
and the software aspects to administer and support these environ-
ments in the following sections.

2 HARDWARE ENVIRONMENTS

To support the various activities in our laboratories, a diverse variety
of display systems are installed. This ranges from desktop systems
and head-mounted displays to large wall displays and walkable
CAVE-type systems.

Head-mounted displays (HMDs) provide a cost-effective way to
provide immersive display technologies to students and researchers.
In our laboratories, the HTC Vive Eye HMDs and HP mixed real-
ity devices are available. Figure 2 shows students exploring their
custom-developed software using one of the head-mounted displays.
We also utilize the Magic Leap One augmented reality devices.
These stand-alone devices, similar to the Microsoft Hololens, pro-
vide an overlay image on top of the real world suitable for augmented
reality applications. We have successfully used these devices for
nursing education in which overlay images of fully animated or-
gans and other internal structures are displayed on the traditional
manekins [10,12]. Another application was for assisting surgeons to
visualize fractured ribs through the skin based on a CT scan during

Figure 3: High-resolution tiled display system showing a GIS applica-
tion based on OpenStreetMap.

Figure 4: Molecular visualization using the DIVE system.

corrective surgery [11, 14].
Different projector-based display systems are available, such as

a Barco CADwall and a mobile projection screen with support for
passive stereo. For applications that require higher-resolution display
environments, tiled configurations are a common way of supporting
those applications. One of our configurations uses a 2-by-3 setup
comprising Sony’s 50-inch 4K TVs [17]. The entire system is driven
by a single computer with two graphics cards to allow an easy
deployment of standard software packages. To provide intuitive
input modalities, this system uses a Logitech touchpad T650 to
enable smartphone-style interaction metaphors.

An in-house built system, the Display Infrastructre for Virtual
Environments (DIVE) [19], utilizes 27 55-inch full-HD LED-backlit
displays with small bezels. Specifically, we used Samsungs UA55E
large-format displays as those are commercial-grade displays. Ar-
ranged in a 3-by-3 configuration per wall using three walls, the
system provides a 12-by-12 feet walkable footprint with a height of
87 inches. Each wall is driven by a single computer with three graph-
ics cards running each of the Samsung displays in the side-by-side
HDMI stereo mode. Since active stereo glasses are used for this sys-
tem, all graphics cards are frame-looked using AMD’s FirePro S400
sync cards. This provides a high-resolution display system bright
enough to be used in an environment with the lights fully turned
on. To interact with the system, a NaturalPoint OptiTrack optical
tracking system is used as well as a Logitech wireless gamepad. In
addition, our custom pinch glove uses the electronic components of
a wireless mouse with contacts on the fingers and thumb wired to
where the mouse buttons used to connect to. These pinch gloves are
also fully tracked in 3D space using the optical tracking system.

To provide access to a fully immersive walkable display system,
we chose the Virtalis ActiveCube to upgrade form the previous Barco
I-Space. Our configuration includes a typical 10-by-10 feet footprint
with projections on three walls and the floor. Figure 1 shows this
system depicting an anatomical model of the rib cage and multiple

Figure 5: Software framework for rendering geometric content will full
physics support.

organs. The system uses Barco’s F80 series projectors which are
laser-based projectors to avoid continuous bulb replacements. Each
side wall uses two projectors resulting in about 2716 by 2716 pixels
per wall. The system is combined with an A.R.T optical tracking
system with a flystick2 for input.

3 SOFTWARE ENVIRONMENTS

Many of the display systems are powered by Linux or support a
dual-boot environment in which Linux and Windows are installed
side-by-side. Additional software is used to realize different virtual
environments as outlined in the following sections. We have a
variety of software packages installed, incuding ParaView [1] and
FreeVR [15]. However, the ones listed in the sections below are the
ones most frequently used.

3.1 VRUI
One of the libraries we have successfully used to develop more so-
phisticated software is VRUI created by Olliver Kreylos [7]. This
library supports a variety of display configurations and is fully cus-
tomizable with excellent support for different tiled display config-
urations run by one or more computers. Support for several input
devices, such as gamepads, is also available. Keyboards and mice
can be used as input devices as well. Hence, our pinch gloves using
the electronic components of a wireless mouse is directly supported
already. Multiple 3D tracking systems are supported either natively,
such as the Intersense systems, or through network-based protocols,
such as VRPN or A.R.T’s dtrack. Support for additional input de-
vices can also be added based on the already available drivers. For
example, we implemented support for touch-based input devices.
This allows us to utilize the Logitech T650 touchpad or any other
touchscreen to enable smartphone-style input metaphors, such as
pinch-zoom, rotation, or panning. This can provide a very intuitive
input mechanism for many applications.

VRUI creates an OpenGL context for all the displays involved
in the specific configuration. For simple setups, this may be just
a single one. For more complex ones, multiple OpenGL contexts
may be created. For example, the CAVE-type display using the
Samsung TVs describes earlier renders onto a column of 3 TVs
using a dedicated graphics card. Each wall is formed by a 3 × 3
configuration of TVs so there will be three OpenGL contexts created
for each wall. This allows VRUI to fully take advantage of the
accelerated 3D support provided by the graphics cards. VRUI then
renders into those graphics contexts as needed.

The advantage of providing an OpenGL context is that any
OpenGL-based application can be supported. One can use a tra-
ditional approach to render content using OpenGL commands to

render the required geometry. However, any other OpenGL-based
library can be used as well. For example, we also use OpenScene-
Graph and have it render any geometric content into the OpenGL
context. Any library building onto OpenSceneGraph can be sup-
ported in this way as well. Additionally, the bullet physics engine
is used to provide a physics model to create realistic animations.
Figure 5 shows a schematic layout of all the necessary components
for this software setup.

The other big advantage of VRUI is that it is centrally configured
with a few configuration files. In our case, these configuration files
are located on the server that all of our Linux installation mounts.
The parameters for all of our display systems are collectively speci-
fied in these configuration files. This then allows VRUI to identify
the computer it is running on based on its hostname and grab the
configuration for that system. As a result, the same software can
then be run directly on all of our display systems without changing
the software or even the need for recompiling it. This provides a
very elegant software development platform in an educational en-
vironment by allowing students to develop on a simpler hardware
configuration, for example, a 4K stereo-capable TV with Natural
Point’s optical tracking system as provided in the Immersive Visu-
alization and Animation Theater. The student can then simply take
their software and run it on the DIVE system, the Virtalis Active-
Cube, or any other display system immediately without requiring
changes to the software.

3.2 Unity
The game engine Unity has gained a lot of popularity within the
virtual and augmented reality community. This is mainly due to the
fact that many manufacturers support Unity directly for their devices.
This is the case for pretty much all head-mounted virtual reality de-
vices, such as the HTC Vive series or HP’s mixed reality devices, but
also for augmented reality devices, such as the Magic Leap devices
or Microsoft’s Hololens. In addition, Unity provides a relatively easy
entrance to developing virtual and augmented reality software since
there is a lot of support for a large variety of devices and controllers
as well as additional support for developing 3D environments. Unity
can also be used in traditional CAVE-type configurations. Mid-
dleVR provides a commercially available integration for using Unity
with CAVE-type displays [8]. An open-source integration was de-
veloped at the University of Wisconsin, Madison by Tredinnick et
al. [16] that is freely available called Uni-CAVE. Since Uni-CAVE
may require more configuration compared to MiddleVR, Davis et al.
provide additional tutorials for setting up Uni-CAVE [2]. Once con-
figured, Unity-based software developed for other devices, such as
head-mounted displays, can be ported over by importing the content
into the new Unity environment. Obvioulsy, all of the interaction
mechanisms have to be ported over to the input devices used within
the CAVE-type environment.

3.3 Visionary Renderer
Visionary Renderer is a commercial software package provided
by Virtalis. Visionary Renderer can be run on a standard desktop
computer or within a CAVE-type environment. It also supports head-
mounted VR displays. Visionary Renderer is capable of ingesting a
variety of different CAD formats natively. These models can then
be explored or edited within the virtual reality environment.

The models can be fully animated through lua [5] scripting. This
can be used to create simulated environments for training purposes
of using some type of equipment or machinery, as just one example.
Visionary Renderer provides a very high visual quality and flexibility
in configuring the virtual environment.

3.4 VTK
VTK can also be used for creating virtual reality applications, par-
ticularly for the purpose of visualizing or exploring different types

of data sets. VTK supports the HTC Vive directly in Linux and
Windows. It requires SteamVR to be installed.

Another way of utilizing VTK is by combining it with VRUI.
VTK can be used to render its content into an existing OpenGL
context using the vtkExternalOpenGLRenderer class. This then
allows us to support all of our display systems directly.

4 ADMINSTRATION

Running a virtual reality laboratory can be challenging from an
administrative perspective. On the one hand, augmented and virtual
reality devices and display systems tend to be pricy. The advent of
modern head-mounted displays has brought down the cost of entry
significantly with some headsets starting at just a couple hundred
dollars. But many are still a $1000 or higher in price. Augmented
reality devices tend to be even costlier and can go for even more
than $3000. Walkable display systems are typically even more
expensive with many CAVE-type display systems costing hundreds
of thousands of dollars or more. However, in our experience, these
display systems can be advantageous, especially for novice users as
they are not completely detached from the real world as would be
the case with a head-mounted display. It is also a little easier for the
user to take off the 3D glasses compared to a head-mounted display.
So in cases of nausea or dizziness, these types of display systems
can be a benefit that may make the higher price tag worthwhile.
Another advantage can be field-of-view. Head-mounted displays
typically have a limited field of view of 140 degrees or less. The
peripheral vision extends beyond that. We have performed studies
in our laboratory where covering the full field of view including the
peripheral vision was important which is why we chose the DIVE
system for those studies [3].

Another issue with directing a virtual reality laboratory is mainte-
nance. In our case, we do not have dedicated techs to support the
systems. This makes it important for the systems and the software
to require as little maintenance as possible. Based on the design
choices we made for both the hardware and software configurations,
we were fairly successful in achieving this goal.

4.1 Funding
The initial investment for the laboratories came from the Ohio Third
Frontier program to set up the Appenzeller Visualization Laboratory
augmented by private donations. These funds allowed us to purchase
our first CAVE-type system, a Barco I-Space, and a large display
wall, a Barco CADWall. Additional investments from the College
of Engineering at Wright State University were used to add the
TV-based CAVE-type display system (DIVE) and additional large
tiled display walls. Recently, a grant from the Ohio Department of
Higher Education funded a replacement for the original CAVE-type
system, the Virtalis ActiveCube, and additonal head-mounted virtual
and augmented reality displays. Additional grant funding from the
U.S. Air Force, U.S. Army, and the National Science Foundation
supported the software development of a variety of visualization and
extended reality software.

Supporting a set of laboratories at this scale can be challenging.
We have been very fortunate to have been able to fund our efforts
through a variety of sources as outlined above. The majority of our
display systems with the exception of the Barco CADWall and the
Virtualis ActiveCube was designed and built in-house. This allowed
us to significantly cut down on the cost of these display systems.

4.2 Maintenance
In our experience, Linux has served us well in supporting the diverse
set of display environments available in our laboratories. The Win-
dows operating system enforces updates which tend to break things
at times. In Linux, we have updates disabled by default, and any
updates are applied manually, typically on all systems at the same
time. The installation is identical for all systems and ties in with

a common server structure where home directories and additional
software packages are installed and accessed from all clients driving
the displays. This creates a very homogenous environment in which
installed software packages become available to all clients immedi-
ately through the server. Similarly, the same software can be run on
various display systems without requiring any changes using soft-
ware libraries, such as VRUI. From an administration perspective,
this makes this type of setup require significantly less support than
Windows or other configurations. The Linux installation very rarely
requires us to make any kind of adjustments.

We use a dedicated demo account with many of the software
packages that we developed over the years and their configurations.
This isolates all the settings and the software from any software
development activities allowing us to have working versions of
those software packages at all times in case we need to do a quick
demonstration for an impromptu visitor.

We also try to find hardware configurations that require mini-
mal maintenance. This is why our updated CAVE-type system, the
Virtalis ActiveCube, utilizes laser-based projectors to avoid bulb re-
placements. This cuts down on maintenance, downtime, and cost all
at the same time. Another maintenance issue with projection-based
systems can be alignment. All of our systems that use more than a
single projector and thus require precise alignment of the images
use fixed projection screens made out of glass or plexiglass. This
provides the most rigid setup. The Appenzeller Visualization Labo-
ratory is temperature and humidity controlled with its dedicated air
conditioning unit to avoid structural movement as much as possible.

The in-house built systems using different types of LCD displays
or TVs have been very reliable as well. Over the years, we had to
replace just a single TV for the DIVE system. This occurred fairly
early on and was still covered under warranty. All the computing
equipment driving these displays was all configured and assembled
in-house and use high-quality name-brand components. As a result,
we had very few hardware failures over the years.

4.3 Software Development
Developing software for augmented and virtual reality applications
can be challenging in an educational environment. While for re-
search projects, graduate students are usually developing a lot of
code for a variety of software projects. Developing software for
teaching purposes can be more challenging, albeit educational re-
search funding is sometimes available for this purpose. However,
graduate students typically develop prototype software for their
research projects. Once the student graduates, there is a bit of a
knowledge drain with respect to that software. As a result, managing
larger software projects can be difficult in such an environment.

Providing students with basic frameworks to develop their soft-
ware can make integrating various components into a larger frame-
work easier. This then still poses the need for integrating the different
components to form a larger software package with the additional
requirement of testing the final version of the software. Alternatively,
the students can contribute directly to a common software repository.
Establishing coding standards, testing procedures, and best practices
can help to ensure a quality standard of the resulting software.

5 CONCLUSION

In conclusion, the visualization and simulation environment at
Wright State University has been very successful. The students
appreciate and enjoy having access to this type of equipment. The
laboratories have contributed to a variety of research projects. Es-
pecially the larger display systems are met with a lot of excitement
from the general population during open-house events as well. These
display systems were successfully used for experimental studies [13]
and comparative visuslizations [9], for example. Virtual reality and
simulations have also been shown to be effective tools for educa-
tion and training with clear benefits to the learning process. We

have used our virtual reality and simulation laboratories for training
nurses [10, 12], medical personell [4], and our students [18].

ACKNOWLEDGMENTS

The activities outlined in this paper are supported by the National
Science Foundation, the U.S Air Force, the U.S. Army, the Ohio
Third Frontier program, the Ohio Department of Higher Education,
and private donations from Robert C. Appenzeller.

REFERENCES

[1] J. Ahrens, B. Geveci, and C. Law. Paraview: An end-user tool for large
data visualization. The visualization handbook, 717(8), 2005.

[2] C. Davis, J. Collins, J. Fraser, H. Zhang, S. Yao, E. Lattanzio, B. Bal-
akrishnan, Y. Duan, P. Calyam, and K. Palaniappan. CAVE-VR and
unity game engine for visualizing city scale 3d meshes. In 2022 IEEE
19th Annual Consumer Communications & Networking Conference
(CCNC), pp. 733–734. IEEE, 2022.

[3] B. R. Guthrie, P. Parikh, T. Whitlock, M. Glines, T. Wischgoll, J. Flach,
and S. Watamaniuk. Comparing and enhancing the analytical model
for exposure of a retail facility layout with human performance. In
Proceedings of the 2018 IISE Annual Conference, 2018.

[4] P. J. Hershberger, Y. Pei, T. N. Crawford, S. M. Neeley, T. Wischgoll,
D. B. Patel, M. M. Vasoya, A. Castle, S. Mishra, L. Surapaneni, et al.
An interactive game with virtual reality immersion to improve cultural
sensitivity in health care. Health Equity, 6(1):189–197, 2022.

[5] R. Ierusalimschy, L. H. De Figueiredo, and W. Celes. Lua 5.1 reference
manual, 2006.

[6] C. Koehler, A. Berger, R. Rajashekar, T. Wischgoll, and S. Su. Dynamic
collaborative visualization ecosystem to support the analysis of large-
scale disparate data. In 2019 IEEE International Conference on Big
Data (Big Data), pp. 3968–3977. IEEE, 2019.

[7] O. Kreylos. Environment-independent vr development. In International
Symposium on Visual Computing, pp. 901–912. Springer, 2008.

[8] S. Kuntz. MiddleVR a generic VR toolbox. In 2015 IEEE Virtual
Reality (VR), pp. 391–392. IEEE Computer Society, 2015.

[9] M. Marangoni and T. Wischgoll. Comparative visualization of protein
conformations using large high resolution displays with gestures and
body tracking. In Visualization and Data Analysis 2015, vol. 9397, pp.
135–147. SPIE, 2015.

[10] S. S. Menon, C. Holland, S. Farra, T. Wischgoll, and M. Stuber. Aug-
mented reality in nursing education–a pilot study. Clinical Simulation
in Nursing, 65:57–61, 2022.

[11] S. S. Menon, T. Wischgoll, S. Farra, and C. Holland. Medical education
and assisted surgery by ar. In The Campus Alliance for Advanced
Visualization (THECAAV20), 2020.

[12] S. S. Menon, T. Wischgoll, S. Farra, and C. Holland. Using augmented
reality to enhance nursing education. Electronic Imaging, 2021(1):304–
1, 2021.

[13] P. Parikh, B. R. Guthrie, T. Whitlock, M. A. Glines, T. Wischgoll, and
J. Flach. Validation of models to estimate exposure in a retail layout
using a 3d virtual environment. Industrial and Systems Engineering
Research Conference (ISERC), 2018.

[14] T. Sensing, P. Parikh, C. Hardman, T. Wischgoll, and S. S. Menon.
Augmented reality headset facilitates exposure for surgical stabilization
of rib fractures. In 16th Annual Acadmic Surgical Congress, 2021.

[15] W. R. Sherman, D. Coming, and S. Su. Freevr: honoring the past,
looking to the future. In The Engineering Reality of Virtual Reality
2013, vol. 8649, pp. 47–61. SPIE, 2013.

[16] R. Tredinnick, B. Boettcher, S. Smith, S. Solovy, and K. Ponto. Uni-
cave: A unity3d plugin for non-head mounted vr display systems. In
2017 IEEE Virtual Reality (VR), pp. 393–394. IEEE, 2017.

[17] T. Wischgoll. Display systems for visualization and simulation in
virtual environments. Electronic Imaging, 2017(1):78–88, 2017.

[18] T. Wischgoll. XR-based workforce develop in the southwestern re-
gion of ohio. The Campus Alliance for Advanced Visualization (THE-
CAAV21), pp. 27–28, 2019.

[19] T. Wischgoll, M. Glines, T. Whitlock, B. R. Guthrie, C. M. Mowrey, P. J.
Parikh, and J. Flach. Display infrastructure for virtual environments.
Electronic Imaging, 2018(1):060406–1, 2018.

	Introduction
	Hardware Environments
	Software Environments
	VRUI
	Unity
	Visionary Renderer
	VTK

	Adminstration
	Funding
	Maintenance
	Software Development

	Conclusion

