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Abstract

Vector fields accur in many of the problems in science and engineer-
ing. In combustion processes, for instance, vector fields describe
the flow of the gas. This process can be enhanced using vector
field visualization techniques. Also, wind tunnel experiments can
be analyzed. An example is the design of an air wing. The wing
can be optimized to create a smoother flow around it. Vector field
visualization methods help the engineer to detect critical features
of the flow. Consequently, feature detection methods gained great
importance during the last years.

Topological methods are often used to visualize vector fields be-
cause they clearly depict the structure of the vector field. In previ-
ous publications about topological methods closed streamlines are
neglected. Since closed streamlines can behave in exactly the same
way as sources and sinks they are an important feature that cannot
be ignored anymore.

To accomplish this, this work concentrates on detecting this
topological feature. We introduce a new algorithm that finds closed
streamlines in vector fields that are given on a grid where the vec-
tors are interpolated linearly. We identify regions that cannot be
left by a streamline. According to the Poincare-Bendixson theorem
there is a closed streamline in such a region if it does not contain
any critical point. Then we identify the exact location using the
Poincare map. In contrast to other algorithms, this method does not
presume the existence of a closed streamline. Consequently, this al-
gorithm is able to really detect closed streamlines inside the vector
field.

In combustion processes closed streamlines in a three dimen-
sional flow are a hint for recirculation zones. These zones describe
regions inside the flow where the gas stays quite long. This is nec-
essary for the gas to completely burn. Therefore, we also show how
to detect this important feature in three dimensional vector fields.

Keywords: vector field, unsteady flow, closed streamline, limit
cycle, bifurcation, topology, flow visualization

1 Introduction

An intuitive and often used method for vector field visualization is
the calculation of streamlines. If one uses this technique in turbu-
lent fields, one encounters often the problem of closed streamlines.
The difficulty with standard integration methods is that streamlines
approaching a closed curve cycle around that curve without ever
approaching a critical point or the boundary. Usually, one uses a
stopping criteria like elapsed time or number of integration steps to
prevent infinite loops. We are interested in the exact location of the
limit cycles, so that such a vague criteria does not fit our needs. For
this reason we developed an algorithm [39] that uses the underly-
ing grid to check if the same cell is crossed while integrating the
streamline: this results in a cycle of cells. In that case, the algo-
rithm determines if the streamline can leave this cell cycle or not.

If it does not leave it is proven that there exists a closed streamline
inside the cell cycle on condition that there is no singularity inside
the involved cells.

Additionally, in time-dependent planar flows it is possible to
track the paths of the singularities and draw the separatricies as sur-
faces that vary when time propagates [35]. When following one par-
ticular singularity, for instance a sink, this singularity may switch
its type and becomes a source: the so called Hopf bifurcation has
occured. Assuming that the global structure of the field has not
changed, there emerges or ends a closed streamline in the surround-
ing of the singularity. Then, the separatrix surface does not reach
the singularity anymore but ends at the closed streamline instead.

For a better understanding of this essential topological property
of the field we investigate the evolution of closed streamlines over
time. There are mainly two different bifurcations involved when the
life cycle of a closed streamline is started or terminated: the hopf
bifurcation and the blue sky in 2D bifurcation which is a global
bifurcation where a saddle gets connected to itself by a streamline.

The evolution of closed streamlines in planar flows is visualized
by a third dimension representing time. We can show the evolu-
tion using a tube that interpolates the closed streamlines in different
timesteps. This technique was inspired by the The Visual Mathe-
matics Library by Abraham and Shaw [4] which facilitates a great
way to understand dynamics by the use of discerning sketches.

Figure 1: Terrestrial Planet Finder Mission (image courtesy of Ken
Museth, Caltech[27]).

In three dimensions closed streamlines also occur. Figure 1|
shows an example. There, a stable manifold from the Terrestrial
Planet Finder Mission of NASA is shown. The circle in the back
shows the location of the closed streamline. To accomplish such
situations, we show how to detect closed streamlines in a three di-
mensional vector field.

In the next section we summarize previous work. Afterwards we
give a short introduction to the theoretical background. Sections 4,
5, and 6 describe the algorithms that detects closed streamlines in
2D, over time, and in 3D respectively. Section 7 shows the results
of our methods.



2 Related Work

Various methods exist that show different aspects of vector fields.
To track a particle in the flow over time streamlines, streaklines,
and pathlines[14] [24] are used. A streamline shows the path of a
massless particle in the flow. Such a particle follows the trajectory
of the dynamical system. A streakline visualizes the path of dye in-
jected for a period of time at a fixed position into a time dependent
flow while a pathline only follows a single particle. A particle cor-
responds to a point moving through the flow. If we use more gen-
eral objects like lines, circles, or implicit surfaces streamsurfaces,
streamribbons, streamtubes, or streamballs are created [6]. Also, an
n-sided polygon can be placed perpendicular to the flow and moved
along the trajectory [34]. This method additionally depicts local
flow attributes, like rotation and shear.

Topological methods depict the structure of the flow by con-
necting sources, sinks, and saddle singularities with separatrices.
Critical points were first investigated by Perry [30][28][29], Dall-
mann [9], Chong [8] and others. The method itself was first intro-
duced in visualization for two dimensional flows by Helman and
Hesselink [17][16][18][19][15]. Several extensions to this method
exist. Scheuermann et al. [33] extended the method to work on a
bounded region. To get the whole topological skeleton of the vec-
tor field, points on the boundary have to be taken into account, also.
These points are called boundary saddles. To create a time depen-
dent topology for two dimensional vector fields, Helman and Hes-
selink [19] use the third coordinate to represent time. This results
in surfaces representing the evolution of the separatrices. A sim-
ilar method is proposed by Tricoche et al. [35][36] but this work
focuses on tracking singularities through time. Although closed
streamlines can act in the same way as sources or sinks, they are
ignored in the considerations of Helman and Hesselink and others.

To extend this method to three dimensional vector fields, Globus
etal. [12] presented a software system that is able to extract and vi-
sualize some topological aspects of three dimensional vector fields.
The various critical points are characterized using the eigenvalues
of the Jacobian. This technique was also suggested by Helman and
Hesselink [19]. But the whole topology of a three dimensional flow
is not yet available. There, streamsurfaces are required to represent
separatricies. A few algorithms for computing streamsurfaces exist
[22][32] but are not yet integrated in a topological algorithm.

There are some algorithms to find closed streamlines in dynam-
ical systems that can be found in the numerical literature. Aprille
and Trick [5] proposed a so called shooting method. There, the
fixed point of the Poincaré map is found using a numerical al-
gorithm like Newton-Raphson. Dellnitz et al. [10] detect almost
cyclic behavior. It is a stochastical approach where the Frobenius-
Perron operator is discretized. This stochastical measure identifies
regions where trajectories stay very long. But these mathematical
methods typically depend on continuous dynamical systems where
a closed form description of the vector field is available. This is
usually not the case in visualization and simulation where the data
is given on a grid and interpolated inside the cells. Van Veldhuizen
[37] uses the Poincaré map to create a series of polygons approx-
imating an attracting closed streamline. The algorithm starts with
a rough approximation of the closed streamline. Every vertex is
mapped by the Poincaré map iteratively to get a finer approxima-
tion. Then, this series converges to the closed streamline.

To get a hierarchical approach for the visualization of invariant
sets, and therefore closed streamlines also, Biirkle et al. [7] en-
close the invariant set by a set of boxes. They start with a box that
surrounds the invariant set completely. This box is successively bi-
sected in cycling directions. It is always ensured that the result still
includes the complete invariant set. Using this bisection, an approx-
imation of the invariant set is finally found which can be rendered
using a volume renderer. The publication of Guckenheimer [13]

gives a detailed overview concerning invariant sets in dynamical
systems.

Some publications deal with the analysis of the behavior of dy-
namical systems. Schematic drawings showing the various kinds
of closed streamlines can be found in the books of Abraham and
Shaw [3][4]. Fischel et al. [11] presented a case study where they
applied different visualization methods to dynamical systems. In
their applications also strange attractors, like the Lorentz attractor,
and closed streamlines occur. So called sweeps which are trajecto-
ries represented as tubes are used. These sweeps allow to introduce
a color coding scheme. For instance, the color can help to recognize
that a trajectory still slowly moves towards a closed streamline that
weakly attracts.

Wegenkitt] et al. [38] visualize higher dimensional dynamical
systems. To display trajectories parallel coordinates [23] are used.
A trajectory is sampled at various points in time. Then these points
are displayed in the parallel coordinate system and a surface is ex-
truded to connect these points. As an example, also a chaotic at-
tractor derived from the Lorentz system is visualized. Hepting et
al. [20] study invariant tori in four dimensional dynamical systems
by using suitable projections into three dimensions to enable de-
tailed visual analysis of the tori. This visualization can help when
limits of mathematical analysis are reached to get more insight into
the dynamical system.

Loffelmann [25][26] uses Poincaré sections to visualize closed
streamlines and strange attractors. Poincaré sections define a dis-
crete dynamical system of lower dimension which is easier to un-
derstand. The Poincaré section which is transverse to the closed
streamline is visualized as a disk. On the disk, spot noise is used
to depict the vector field projected onto that disk. By this method,
it can be clearly recognized whether the flow, for instance, spirals
around the closed streamline and is attracted or repelled or if it is a
rotating saddle. Additionally, streamlines and streamsurfaces show
the vector field in the vicinity of the closed streamline that is not
located on the disk visualizing the Poincaré section.

3 Theoretical Background

We assume that the vector field is given on a grid consisting of trian-
gles or rectangles and interpolated linearly inside the cells. This is
not a limitation since most simluated and measured vector fields are
given on such a grid. In the following subsections, we give a short
overview of the theoretical background concerning closed stream-
lines. The reader should be familiar with at least the fundamental
theory about vector field topology. More about the theoretical back-
ground can be found in several books [21][40][31].

3.1 Limit Sets

The topological analysis of vector fields considers the asymptotic
behavior of streamlines. There we have two different kinds of so
called limit sets, the origin set or ox-limit set of a streamline and the
end set or w-limit set.

Definition 3.1 (a-limit set)
Let s be a streamline in a given vector field v. Then we define the
a-limit set as the following set:
{p € R*|3(ta)22o C R, t, — —oo0, lim s(t.) — p}
n— o0
Definition 3.2 (w-limit set)
Let s be a streamline in a given vector field v. Then we define the

w-limit set as the following set:

{p e R?|3(t:) 20 C R, tn — DO,ﬂLLIEOlQ s(tn) = p}



Remark 3.3

Let v be a vector field. We speak of an a- or w-limit set L of v if
there exists a streamline s in the vector field v that has L as «- or
w-limit set.

Figure 2: Example for a- and w-limit sets.

If the a- or w-limit set of a streamline consists of only one point,
this point is a critical point. The most common case of a a- or
w-limit set in a planar vector field containing more than one inner
point of the domain is a closed streamline which is declared in the
next definition. Figure 2 shows an example for a- and w-limit sets.
Here we have a critical point and a closed streamline. The critical
point and the closed streamline are their own a- and w-limit set.
For every other streamline the closed streamline is the w-limit set.
If the streamline starts inside the closed streamline the critical point
is the a-limit set. Otherwise the c-limit set is empty. Now that
we showed an example for a closed streamline let us give a precise
definition.

Definition 3.4 (Closed streamline)
Let v be a vector field. A closed streamline y : R — R”, t — ()
is a streamline of a vector field v such that there is a to € R with

¥(t + nto) =(t) YneN

and 7y not constant.

Remark 3.5

There are several different terms describing a closed streamline.
The terms limit cycle, closed orbit, and closed streamline are equiv-
alent.

Similar to critical points we define asymptotically stability of
closed streamlines. If a closed streamline is asymptotically stable it
is attracting.

Definition 3.6 (Asymptotically stability of closed streamlines)
Letv : W — R"™ be a vector field that is continuously differen-
tiable. Let further ¢ be the corresponding dynamical system and
v C W a closed streamline. If for every neighborhood U C W
withy C U there is a neighborhood Uy C U withy C Uy such
that ¢¢(x) € U forall z € Uy andt > 0 and

lim mindlg (&) — zl|= € 7} = 0
t—roo
then vy is called asymptotically stable closed streamline.

This means that an asymptotically stable closed streamline at-
tracts the flow inside a special neighborhood. It also follows from
this definition that an asymptotically stable closed streamline is iso-
lated from other closed orbits. In the same way there are closed
streamlines that are repelling. For instance, by inverting the vec-
tor field we can turn an attracting closed streamline into a repelling
one.

3.2 Poincaré Map

R(x)

R(y)

(b)

Figure 3: Poincaré section (a) and Poincaré map (b).

Let us assume we have a two dimensional vector field containing
one limit cycle. Then we can choose a point P on the limit cycle
and draw a cross section S which is a line segment not parallel to
the limit cycle across the vector field. This line is called a Poincaré
section. If we start a streamline at an arbitrary point © on S and
follow it until we cross the Poincaré section S again, we get another
point R(z) on S. This results in the Poincaré map R. Figure 3
illustrates the situation. Part (a) shows the Poincaré section with
the limit cycle in the middle drawn with a thicker line, while the
part (b) displays the Poincaré map itself. Obviously the point P
on the limit cycle is mapped onto itself. Consequently, it is a fixed
point of the Poincaré map.

Let us precise this in some definitions:

Definition 3.7 (Cross section)

Let v be a vector field and S C R™ an open set on a hyperplane of
dimension n— 1 that is transverse to v. Transverse to v means that
v(z) ¢ Sforallz € S. Then S is called a cross section.

Definition 3.8 (Poincarée map)

Let v be a vector field and ¢ the dynamical system belonging to v.
Let further be S a cross section that intersects a closed streamline at
apoint P. Then the Poincaré map is defined as themap R : S — S
such that

T quf—(x) )

where t is the time the streamline started at x needs to intersect the
cross section again after one turn.



Remark 3.9
It is obvious that the point P on the closed streamline is a fixed
point of the Poincaré map.

3.3 The Poincaré-Bendixson Theorem

In this subsection we show a fundamental result which makes it eas-
ier to find closed streamlines in a two dimensional vector field. This
property is exploited by our algorithm which is introduced later.

Theorem 3.10 (Poincaré-Bendixson Theorem)

Let W C R® be an open subset and v : W — R® a two dimen-
sional, continuously differentiable vector field. Let further L C W
be a nonempty compact limit set of the vector field v that contains
no critical point. Then L describes a closed streamline.

Corollary 3.11

Let W C R® be an open subset and v : W — R* a two dimen-
sional, continuously differentiable vector field. Let further D C W
be a nonempty compact subset which contains no critical point and
s a streamline inside D. If the streamline s does not leave D then
there exists a closed streamline inside D.

Using this corollary our algorithm to detect closed streamlines
can simply integrate a streamline and check during the integration
process if it runs into a compact region that is never left. If we find
such aregion this corollary states that we found a closed streamline.

4 Detection of Closed Streamlines in 2D

In a precomputational step every singularity of the vector field is
determined. To find all stable closed streamlines we mainly com-
pute the topological skeleton of the vector field. We use an ordinary
streamline integrator, like for instance an ODE solver using Runge-
Kutta. But we extended this streamline integrator so that it is able
to detect closed streamlines. In order to find all closed streamlines
that reside inside another closed streamline we have to continue in-
tegration after we found a closed streamline inside that region.

Figure 4: A streamline approaching a limit cycle has to reenter
cells.

4.1 Theory

The basic idea of our streamline integrator is to determine a re-
gion of the vector field that is never left by the streamline. Accord-
ing to the Poincaré-Bendixson-Theorem, a streamline approaches a
closed streamline if no singularity exists in that region.

Notation 4.1 (Actually investigated streamline)
We use the term actually investigated streamline to describe the
streamline that we check if it runs into a limit cycle.

To reduce computational cost we first integrate the streamline
using a Runge-Kutta-method of fifth order with an adaptive stepsize
control. Every cell that is crossed by the streamline is stored during
the computation. If a streamline approaches a limit cycle it has to
reenter the same cell again as shown in figure 4. This results in a
cell cycle:

Definition 4.2 (Cell cycle)

Let s be a streamline in a given vector field v. Further, let G be a
set of cells representing an arbitrary rectangular or triangular grid
without any holes. Let C C G be a finite sequence co, . ..,cn of
neighboring cells where each cell is crossed by the streamline s in
exactly that order and co = cn. If 8 crosses every cell in C in this
order again while continuing, C is called a cell cycle.

This cell cycle identifies the region mentioned earlier. To check
if this region can be left we could integrate backwards starting at
every point on the boundary of the cell cycle. If there is one point
converging to the actually investigated streamline we know for sure
that the streamline will leave the cell cycle. If not, the actually
investigated streamline will never leave the cell cycle. Since there
are infinitely many points on the boundary this, of course, results
in a non-terminating algorithm. To crack this problem we have to
reduce the number of points we have to check. Therefore we define
potential exit points:

Definition 4.3 (Potential exit points)

Let C be a cell cycle in a given grid G as in Definition 4.2. Then
there are two kinds of potential exit points. First, every vertex of
the cell cycle C is a potential exit point. Second, every point on an
edge at the boundary of C where the vector field is tangential to the
edge is also a potential exit point. Here, only edges that are part
of the boundary of the cell cycle are considered. Additionally, only
the potential exit points in the spiraling direction of the streamline
need to be taken into account.

To determine if the streamline leaves the cell cycle we start a
backward integrated streamline to see where we have to enter the
cell cycle in order to leave it at that exit. We will show later that it
is sufficient to only check these potential exit points if we want to
figure out if the streamline can leave the cell cycle.

Notation 4.4 (Backward integrated streamline)

We use the term backward integrated streamline for the streamline
we integrate by inverting the vectors of the vector field starting at a
potential exit point in order to validate this exit point.

Figure 5: If a real exit point can be reached, the streamline will
leave the cell cycle.

Definition 4.5 (Real exit points)

Let P be a potential exit point of a given cell cycle C as in defini-
tion 4.3. If the backward integrated streamline starting at P does
not leave the cell cycle after one full turn through the cell cycle, the
potential exit point is called a real exit point.
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Figure 6: If no real exit point can be reached, the streamline will
approach a limit cycle.

Since a streamline cannot cross itself the backward integra-
tion starting at a real exit point converges to the actually investi-
gated streamline. Consequently, the actually investigated stream-
line leaves the cell cycle near that real exit point. Figure 5 shows
such a real exit point.

If on the other hand no real exit point exists we can determine for
every potential exit point where we have a region with an inflow that
leaves at that potential exit. Consequently, the actually investigated
streamline cannot leave near that potential exit point.
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Figure 7: Different cases of potential exits. (a) and (b) is impossible
because streamlines cannot cross each other, (c) contradicts with
the linear interpolation on an edge, in (d) and (e) both backward
integrations converge to the actual streamline so that the point E is
areal exit.

With these definitions we can formulate the main theorem for
our algorithm:

Theorem 4.6

Let C be a cell cycle with no singularity inside and E the set of po-
tential exit points. If there is no real exit point among the potential
exit points E or there are no potential exit points at all then there
exists a closed streamline inside the cell cycle.

Proof: (Sketch)

Let C be the cell cycle. It is obvious that we cannot leave the cell
cycle C if all backward integrated streamlines started at every point
on the boundary of C' leave the cell cycle C. According to the
Poincaré-Bendixson-theorem, there exists a closed streamline in-
side the cell cycle in that case.

We will show now that it is sufficient to treat only the potential
exit points. If the backward integrated streamlines starting at all
these potential exit points leave the cell cycle the backward integra-
tion of any point on an edge will also do.

Figure 7 shows the different configurations of potential exits.
Let F be an arbitrary point on an edge between two potential exit
points. In part (a) both backward integrated streamlines starting at
the vertices V1 and V> leave the cell cycle. Consequently, E can-
not be an exit. It would need to cross one of the other backward
integrated streamlines which is impossible.

Part (b} of figure 7 shows the case where the vector at a point on
the edge is tangential to the edge. Obviously, if E lies between V1
and T the backward integrated streamline will leave the cell cycle
immediately. If it lies between T' and V3 and converges to the actu-
ally investigated streamline it has to cross the backward integrated
streamline started at 7'. This is not possible. Because of the linear
interpolation at the edge, part (c) is also impossible.

We have shown that the actually investigated streamline cannot
leave the cell cycle. Consequently, there exists a closed streamline
inside the cell cycle C' since there is no singularity inside C. &

Remark 4.7

To get a possible configuration the backward integration starting at
the vertex Vi must also converge to the streamline because it can-
not cross the backward integration starting at point E as in part
(d) of figure 7. Part (e) explains why we also need 1o investigate
the tangential case. If we start a backward integrated streamline at
point E it converges towards the actually investigated streamline.
But if we only consider the vertices of the edge, both exit points may
be no real exit points. Therefore we also have to start a backward
integrated streamline at the point T, where the vector field is tan-
gential to the edge, to figure out that we leave the cell cycle at this
edge. On the other hand, a backward integrated streamline starting
at any point between Vy and T immediately leaves the cell cycle
due to the linear interpolation.

4.2 Algorithm

With theorem 4.6 we are able to describe our algorithm in detail. It
mainly consists of the same three different states:

streamline integration: identifying one cell change after the
other, check at each cell if we complete a cell cycle.

checking for exits: going backwards through the crossed cells
and looking for potential exit points.

validating exit: integrating backwards a curve from potential
exit through the whole cell cycle.

We first use a standard integration method to compute the
streamline, first. In this step we only check for cell cycles. This
saves computational time since the checking of all the exits is rather
expensive. If we detect a cell cycle we have to find all potential
exit points. After that we need to validate each of the potential exit



points to figure out if there is a real exit point among them. If this is
the case we did not run into a closed streamline yet. Therefore we
continue with the standard integration. The algorithm exits if we
could not find a real exit point among all the potential exit points
or if we reached a critical point or the boundary of the vector field.

Remark 4.8
Theorem 4.6 guarantees that our algorithm detects closed stream-
lines if we check every potential exit point.

Figure 8: Exits of a cell cycle.

Figure 8 shows areal example of our algorithm. There we start a
streamline near the source in the center of the figure. This stream-
line spirals until we find the first cell cycle. We stopped the inte-
gration there for this example. The figure also shows all exits and
its backward integrated streamlines. In this example, every poten-
tial exit point is shown. We can see that potential exit points which
are passed by a backward integrated streamline do not necessarily
need to be investigated because if the backward integrated stream-
line leaves the cell cycle the other one will also do. Figure 9 shows
this in detail. There the backward integrated streamline starting at
Exir 2 also has to leave the cell cycle because it cannot cross the
backward integrated streamline starting at Exit /. In the other case,
where the backward integrated streamline started at Exir I stays in-
side the cell cycle, we have to continue the actually investigated
streamline, anyway.

Figure 9: Exit of the cell cycle which does not need to be investi-
gated.

Since the streamline spirals from the inner region to the outside,
we only have to consider the potential exits in that direction. In
the example, every backward integrated streamline leaves the cell
cycle. Consequently, there is a limit cycle in this cell cycle which
can be localized as described in the next section.

4.3 Exact Location of Closed Streamlines

Since we know a region that is never left by the streamline we can
find the exact position of the closed streamline using the Poincaré
map. This map is described in detail in the subsection 3.2.

To find the exact position of the closed streamline we can use
the edge where we detected the cell cycle as a Poincaré section.
Then we only have to find the fixed point of the Poincaré map.
We use a binary search to find this fixed point: we divide the edge
where we detected the cell cycle into two parts. At the mid point
we start a streamline to see which part of the edge is intersected by
the streamline after one full turn. Since the streamline cannot leave
the cell cycle, it is guaranteed that the streamline intersects one part
of the edge. Then, this part is subdivided again and we start another
streamline at the mid point. This process continues until we are
close enough to the fixed point of the Poincaré map. We use the
length of the part of the edge as a stopping criterion.

This fixed point gives us a point lying on the closed streamline. If
we start another streamline at that point this streamline will follow
the closed streamline we are looking for. After one turn, i.e. after
reaching the start point again, we know the exact location of the
closed streamline.

5 Closed Streamlines in Time-Dependant
Flows

When dealing with closed streamlines one question occurs: how
does a closed streamline emerge? Inspired by the books of Abra-
ham and Shaw[1] [2] [3] [4] we visualize the evolution of a closed
streamline in a planar unsteady flow. We use the third dimension
to represent the time. The evolution of a closed streamline can be
shown as a tube shaped visulization for the closed streamlines in
the various timesteps.

The singularities are used as a starting point for our investiga-
tions. Therefore we briefly describe the tracking of the singularities
in the next section. This work was done by Tricoche et al. [35].
Then we show how to find and follow a closed streamline over time.
In the end we explain the results of our algorithm and explain the
limitations of our method.

5.1 Tracking Critical Points

When dealing with time-dependent two-dimensional flows we can
use the third dimension to represent time. For tracking the closed
streamlines we first determine the behavior of the critical points.
For a given cell, the associated interpolant contains, for each value
of time ¢, a single critical point. This is due to the affine linear na-
ture inside the triangles of its restriction to any time plane. Letting
the time parameter £ move from ¢; to t;41, the critical point posi-
tion describes a 3D curve. A detailed description of how to find the
paths of the critical points can be found in the article of Tricoche et
al. [35].

5.2 Following Closed Streamlines

After tracking the singularities, we analyze the vector field in dis-
crete timesteps. There must be a critical point inside each closed
streamline. Therefore, we use the critical point path containing a
Hopf bifurcation as a starting point for our streamline algorithm
from section 4 which detects the closed streamline if it exists. We
follow the critical point path in discrete steps in positive and nega-
tive directions starting at the bifurcation. After we have found the
cell cycle containing the closed streamline we find the exact posi-
tion using the Poincaré-map from subsection 4.3. As a last test we
have to check if the closed streamline really surrounds the critical
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Figure 10: Closed streamlines found by the algorithm.

point. This is necessary because the streamline may have ran into
another closed streamline in a totally different region of the flow.
Obviously, closed streamlines surrounding the critical point occur
only in one of the two temporal directions. We continue by step-
ping forward in the temporal direction until the closed streamlines
reach either another bifurcation which breaks them up or the border
of the grid.

-

Figure 11: Closed streamlines visualized as a tube over time.

%

Figure 10 shows the result of this step. Here we have found the
closed streamlines at various timesteps. The closed streamlines are
approximated by several line segments. The paths of the critical
points are also shown using the same colors as in the original paper
[35]. The Hopf bifurcation, where we started to detect the closed
streamlines, is marked with a yellow sphere. In this example the
life cycle of the closed streamline is started by a Hopf bifurcation
and terminated by a Periodic Blue Sky in 2D bifurcation.

To visualize the evolution of closed streamlines, we construct
tubes from the various closed streamlines similar to the pictures by
Abraham and Shaw [4]. We construct surfaces consisting of trian-
gles which connect the approximating line segments of the closed
streamlines. The bifurcation point is connected to the tube using a
parabolic surface approximated with triangles. The result is shown
in figure 11.

Figure 12: Backward integrated surface.

Although the principle to detect closed streamlines in a three di-
mensional vector field is similar to the two dimensional case there
are some differences. We will describe the theoretical and algorith-
mical differences and similarities in the next two subsections.

6.1 Theory

We assume that the data is given on a tetrahedral grid. But the
principle should work on other cell types as well. The detection
of a cell cycle works the same as in definition 4.2. Of course, the
cells are three dimensional in this case. To check if we can leave the
cell cycle we have to consider every backward integrated streamline
starting at an arbitrary point on a face of the boundary of the cell
cycle. Looking at the edges of a face we can see directly that it is not
sufficient to just integrate streamlines backwards. Figure 12 shows
an example. We integrated a streamsurface backwards starting at
an edge of the cell cycle. The streamlines starting at the vertices of
that edge leave the cell cycle earlier than the complete surface. So it
may be possible that a part of the streamsurface stays inside the cell
cycle although the backward integrated streamlines starting at the
vertices leave it. Consequently, we have to find another definition
for exits.

Definition 6.1 (Potential Exit Edges)
Let C be a cell cycle in a given tetrahedral grid G as in Defini-
tion 4.2. Then we call every edge at the boundary of the cell cycle
a potential exit edge. Analogue to the two dimensional case we de-
fine a line on a boundary face where the vector field is tangential to
the face as a potential exit edge also.

Due to the fact that we use linear interpolation inside the tetrahe-
drons it can show that there will be at least a straight line on the face
where the vector field is tangential to the face or the whole face is
tangential to the vector field. Therefore, we do not need to consider
any isolated point on a face where the vector field is tangential to
the face because this cannot occur.

When dealing with edges as exits we have to compute a stream-
surface instead of streamlines to consider every point on an exit
edge. This leads us to the following notation.

Notation 6.2 (Backward integrated streamsurface)

We use the term backward integrated streamsurface to describe the
streamsurface we integrate by inverting the vectors of the vector
field starting at a potential exit edge in order to validate this exit
edge.

Analogue to definition 4.5 we define real exit edges.



Definition 6.3 (Real exit edge)
Let E be a potential exit edge of a given cell cycle C as in defini-
tion 6.1. If the backward integrated streamsurface does not com-
pletely leave the cell cycle after one full turn through C then this
edge is called a real exit edge.

For the backward integrated streamsurface we use a sim-
plified version of the streamsurface algorithm introduced by
Hultquist [22]. Since we do not need a triangulation of the surface
we only have to process the integration step of that algorithm.
Initially, we start the backward integration at the vertices of the
edge. If the distance between these two backward integrations
is greater than a special error limit we start a new backward
integration in between. This continues with the two neighboring
integration processes until we have created an approximation of the
streamsurface that respects the given error limit.

The integration stops if the whole streamsurface leaves the cell
cycle or if we have completed one full turn through the cell cycle.
But to construct the surface properly we may have to continue a
backward integration process across the boundary of the cell cycle.
This is due to the fact that some part of the streamsurface is still
inside the cell but the backward integrated streamline has already
left it.

With these definitions and motivations we can formulate the
main theorem for our algorithm:

Theorem 6.4

Let C be a cell cycle as in definition 4.2 with no singularity inside
and E the set of potential exit edges. If there is no real exit edge
among the potential exit edges E or there are no potential exit edges
at all then there exists a closed streamline inside the cell cycle.

Proof: (Sketch)

Let C be a cell cycle with no real exit edges. Every backward inte-
grated streamsurface leaves the cell cycle C' completely. As in the
2D case it is obvious that we cannot leave the cell cycle if every
backward integration starting at an arbitrary point on a face of the
boundary of the cell cycle C leaves the cell cycle. So we have to
prove that the actually integrated streamline cannot leave the cell
cycle C.

We look at each face of the boundary of the cell cycle C. Let ¢
be an arbitrary point on a face F' of the boundary of the cell cycle
C. Let us assume that the backward integrated streamline starting
at () converges to the actually investigated streamline. We have to
show that this is a contradiction.

First case:  The edges of face F are exit edges and there is no
point on F' where the vector field is tangential to F'.

From a topological point of view the streamsurfaces
starting at all edges of F build a tube and leave the
cell cycle. Since the backward integrated stream-
line starting at () converges to the actually inves-
tigated streamline it does not leave the cell cycle.
Consequently, it has to cross the tube built by the
streamsurfaces. Because streamlines cannot cross
each other a streamline cannot cross a streamsurface.

Second case: There is a potential exit edge e on the face F' that is
not a part of the boundary of F'.

Obviously, the potential exit edge e divides the face
F into two parts. In one part there is outflow out of
the cell cycle C while at the other part there is inflow
into C. We do not need to consider the part with out-
flow any further because every backward integrated

streamline starting at a point of that part immediately
leaves the cell cycle C.

The backward integrated surface starting at the po-
tential exit edge e and parts of the backward inte-
grated streamsurfaces starting at the boundary edges
of the face F build a tube again from a topologi-
cal point of view. Consequently, the backward inte-
grated streamline starting at (@ has to leave the cell
cycle C.

We have shown that the backward integrated streamline starting
at the point @ has to leave the cell cycle also. Since there is no
backward integrated streamline converging to the actually investi-
gated streamline at all, the streamline will never leave the cell cycle.

=]

6.2 Algorithm

With theorem 6.4 we are able to describe our algorithm in detail. Tt
is quite similar to the two dimensional case and mainly consists of
three different states:

streamline integration: identifying one cell change after the
other, check at each cell if we reached a cell cycle.

checking for exits: going backwards through the crossed cells
and looking for potential exit edges.

validating exit: integrating backwards a streamsurface from
potential exit edges through the whole cell cycle.

Figure 13: Closed streamline including cell cycle and backward
integrations.

Figure 13 shows an example of our backward integration step.
There, also the closed streamline and the cell cycle are shown. Ev-
ery backward integrated streamsurface leaves the cell cycle. Ac-
cording to theorem 6.4, there exists a closed streamline inside this
cell cycle. Then we can find the exact location by continuing the in-
tegration process of the streamline that we actually investigate until
the difference between two successive turns is small enough. This
numerical criterion is sufficient in this case since we have shown
that the streamline will never leave the cell cycle.

7 Results

The first example is a simulation of a swirling jet with an inflow
into a steady medium. The simulation originally resulted in a three
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Figure 14: Vorticity vector field visualized by the topological skele-
ton including closed streamlines.

dimensional vector field but we used a cutting plane and projected
the vectors onto this plane to get a two dimensional field. This
dataset was provided by Prof. Kollmann from the mechanical engi-
neering department at the University of California at Davis. In this
application one is interested in investigating the turbulence of the
vector field and in regions where the fluid stays very long. This is
necessary because some chemical reactions need a special amount
of time. These regions can be located by finding closed streamlines.
Figure 14 shows all closed streamlines of this vector field including
the topological skeleton.

To test our method that detects closed streamlines over time, we
have created a synthetic vector field containing four critical points.
The position of the critical points is a function of time, describing
closed curves in the plane. We have sampled this vector field on
a triangular point set for several values of the time parameter. The
rotation of the critical points (each with a specific frequency) entails
many structural changes for the topology. This is very interesting
for our purpose since all different types of bifurcations which create
closed streamlines are present.

Figure 15: Detailed view of a Periodic Blue Sky in 2D bifurcation.

Figure 15 show a detailed view of the different bifurcations. Also
some streamlines are drawn to show how these streamlines circle

around the limit cycle but never cross it. The closed streamline is
started by a Hopf bifurcation located in the upper left corner. It
grows in size until it is terminated by a Periodic Blue Sky in 2D
bifurcation. Consequently, the tube visualizing the evolution of the
closed streamline does not get closed.

Figure 16: Limit cycle in a 3D vector field with streamsurfaces.

For the last example we created a three dimensional synthetic
dataset which includes one closed streamline. We first produced
a two dimensional vector field. The vector field contains a sad-
dle singularity in the center and two symmetrical sinks. To get a
three dimensional flow we rotated the two dimensional vector field
around the y-axis. Due to the symmetrical arrangement of the sinks
this vector field includes exactly one closed streamline.

Figure 16 shows the closed streamline found by the algorithm to-
gether with two streamsurfaces. The streamsurfaces are attracted by
the closed streamline. The streamsurface gets smaller and smaller
while it spirals around the closed streamline. After a few turns
around the closed streamline it is only slightly wider then a stream-
line and finally it totally merges with the closed streamline. We
used a rather arbitrary color scheme for the surface to enhance the
three dimensional impression.
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